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1 Introduction

Measures constructed from unstructured data, such as text and images, are gaining promi-

nence due to their high frequency and relatively low cost. Their primary advantage is

availability: using text expands the range of feasible empirical applications, especially when

combined with conventional numeric variables in broader economic models. However, the

limitations are also clear. Statistical properties of unstructured data remain underexplored,

and the algorithms used to process them, particularly those based on AI and machine learn-

ing, are often opaque. As a result, these measures pose a significant risk of violating model

assumptions and distorting economic inference.

In this paper, I document statistical properties of news-based measures that are likely to

violate the assumptions of methods based on the least squares estimation. Most importantly,

I find that daily text-based variables are often nonstationary. To empirically demonstrate

the effect on economic inference, I reevaluate the main finding of Garcia (2013), “the pre-

dictability of stock returns using news’ content is concentrated in recessions.” This finding

is based on comparing the magnitudes of predictive regression coefficients during recessions

and expansions. However, nonstationarity directly affects regression betas, leading to either

unreliable or nonsensical estimates. As a result, the entire difference in the magnitudes of

regression betas between recessions and expansions is explained by two factors: spurious

correlation and the state dependency of equity market volatility. By using robust methods,

I show that daily news sentiment forecasts stock market returns at least as effectively in both

recessions and expansions, with some evidence even suggesting better predictability during

expansions.

I also examine the basic building blocks of the daily news sentiment measures in Gar-

cia (2013): term counts, frequencies, and text lengths. These underlying components are

nonstationary; term counts and text lengths are also cointegrated. As a result, the nonsta-

tionarity of daily news-based variables is inherited from their underlying components and

reflects a property of written financial language. Detecting this nonstationarity proves sur-

prisingly challenging. Both the text-based measures and their underlying components are
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visually nonstationary, but common unit root tests yield inconsistent results. With very few

exceptions, the augmented Dickey-Fuller (ADF, Dickey and Fuller (1979)) test rejects the

null hypothesis of unit root presence. On the other hand, the Kwiatkowski-Phillips-Schmidt-

Shin (KPSS, Kwiatkowski et al. (1992)) test rejects trend stationarity. This situation is rare

compared to conventional numeric data. For example, in Kwiatkowski et al. (1992), out of

14 conventional economic variables, only the industrial production series displays “evidence

against both hypotheses.”

From this perspective, all measure construction algorithms (e.g., term frequency, AI/ML)

are likely to produce nonstationary daily news-based variables, unless they are specifically de-

signed to handle nonstationary and often cointegrated inputs. By testing several prominent

daily news sentiment variables recently introduced in the academic literature, I establish

that the nonstationarity of such measures is a general property and not specific to the con-

struction algorithm or data sources in Garcia (2013). Specifically, I test a daily news-based

sentiment measure proposed by Shapiro et al. (2022), a news-implied volatility measure

(NVIX) introduced by Manela and Moreira (2017), and multiple measures of economic con-

ditions constructed by Bybee et al. (2024). The same pattern of visual nonstationarity and

inconsistent ADF and KPSS test conclusions reemerges for 186 out of 188 daily variables.

Furthermore, the news-based measures of economic conditions in Bybee et al. (2024) are

available at both daily and monthly frequencies. I use this feature to argue that the combi-

nation of high frequency and the type of underlying source material (text) jointly contribute

to the inconsistency in unit root test conclusions.

The main risk of using text-based variables without explicitly accounting for their statis-

tical properties is the potential to distort economic inference. There are two likely sources of

distortion: biased parameters of interest or invalid confidence intervals. Only a few studies

acknowledge and attempt to address these issues. For example, to achieve reliable economic

inference when model inputs are based on unstructured data, Battaglia et al. (2024) pro-

poses using either “joint maximum likelihood estimation of the regression model and the

variables of interest” or “an explicit bias correction with bias-corrected confidence intervals.”
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Unfortunately, both of these approaches require access to the underlying source data and,

as a result, greatly complicate reusing the already existing AI- or ML-generated indices.

Robust statistics provide a viable solution to this problem and enable the use of existing

AI- or ML-generated indices. I revisit Garcia (2013) study and use news-based sentiment

measures to compare daily equity market return predictability during recessions and expan-

sions. Instead of relying on the magnitude of regression coefficients, I use residual-based

statistics (mean absolute error, mean squared error, out-of-sample pseudo R2, etc.), robust

confidence intervals (Ibragimov and Muller (2010)), and benchmarking (Welch and Goyal

(2008), Goyal et al. (2024)). These methods allow me to show that news-based sentiment

lacks excess forecasting power in both recessions and expansions, overturning the original

conclusion of Garcia (2013). In fact, news-based sentiment does not contain any investment

information beyond what is already incorporated into prior market returns. Its predictive

performance is comparable to or worse than that of basic benchmark strategies that rely

solely on historical market returns, such as long-term and short-term averages. This relative

lack of predictive performance is consistent across different time periods and economic condi-

tions, is observed across multiple measures, and is present both in-sample and out-of-sample.

The findings in this study also complement documented economic properties of news-

based sentiment. For example, comparing R2 values of news-based and conventional mea-

sures, Zhou (2018) notes: “In comparison with market- and survey-based measures, it is

surprising that measures based on textual analysis perform better by far. This may indi-

cate that the stock market is likely to overlook information from the latter.” Instead, the

observed high R2 values are just as likely to be artifacts of spurious regressions, caused by

either the nonstationarity of text-based variables or the high frequency of the data, with the

latter problem documented in Chang et al. (2025). Overall, coupling text-based variables

with robust inference improves the reliability of empirical evidence and provides a safeguard

against Type I error in economic and financial applications.
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2 Statistical Properties of Business News

2.1 Data

This paper mainly uses the measures of positivity, negativity, and pessimism proposed in

Garcia (2013) spanning 1905 to 2005. These sentiment variables are constructed from the

daily counts of positive terms (#Positive), negative terms (#Negative), and text lengths

(#Length) sourced from two New York Times columns, “Financial Markets” and “Topics

in Wall Street.”1 Each term’s tone has been classified as either positive or negative using

the Loughran and McDonald (2011) lexicon. Then, the measures are defined as follows (t

denotes the newspaper publication date).2

Positivityt = #Positivet/#Lengtht

Negativityt = #Negativet/#Lengtht

Pessimismt = (#Negativet −#Positivet)/#Lengtht,

Following Garcia (2013), Dow Jones Industrial Average (Dow) log-returns are used to repre-

sent the equity market price movements. To demonstrate external validity, the results are

replicated and also extended past 2005 using the San Francisco Fed daily news sentiment

index (Shapiro et al. (2022)) that ranges from 1980 to 2024.

Almost any procedure used to represent raw text as a numeric array introduces noise into

the resulting measurement. For example, the minimum counts of positive and negative words

in this sample are both zero (Table 1), which is unlikely to be accurate given the breadth

of Loughran and McDonald (2011) lexicon. Additionally, financial documents, even those

as commonplace as newspapers, are often structurally complex. They may contain more

than one section, with only a subset being of interest. Identifying a relevant part of the text
1These counts were obtained directly from Diego Garcia’s website,

https://leeds-faculty.colorado.edu/garcia/data.html.
2See Garcia (2013) for a detailed description of the measure construction procedure, which includes slight

adjustments for market closures.
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(“Financial Markets” and “Topics in Wall Street” columns) is a difficult classification task

even for an advanced AI algorithm. The maximum length of an article is 111,162 words,

likely corresponding to an entire newspaper or multiple sections. The minimum length of an

article in this sample is just 36 words, indicating that only a header was processed (Table

1). Finally, some of the newspapers are only available as images, requiring the use of optical

character recognition, and introducing additional noise into the variable construction process.

Table 1: Sample Statistics: Term Counts, Sentiment Measures, and Dow
Returns

This table includes summary statistics for the individual term counts and text lengths com-
piled in Garcia (2013). Term counts and texts lengths are daily and are grouped by the busi-
ness cycle. #Positive, #Negative, #Length are term counts. Positivity, Negativity, and Pes-
simism are frequency measures defined as a term count divided by text length (e.g. Positiv-
ity=#Positive/#Length) and are reported as percentages. P25 and P75 are 25th and 75th quantiles.
Recession indicator is NBER USRECD. Daily Dow log-returns are in percent.

Obs. Mean StDev Min P25 Median P75 Max
All Dates

#Positive 27,449 18.81 11.94 0 13 18 23 1,385
#Negative 27,449 32.48 19.02 0 22 30 40 1,975

#Length 27,449 1,583.17 847.46 36 1,301 1,530 1,747 111,162
Positivity, % 27,449 1.20 0.42 0 0.90 1.16 1.46 3.70

Negativity, % 27,449 2.06 0.67 0 1.59 1.99 2.45 6.64
Pessimism, % 27,449 0.86 0.88 −3.14 0.26 0.81 1.40 6.64

Dow, % 27,449 0.02 1.07 −25.63 −0.45 0.04 0.53 14.27
Recessions

#Positive 6,455 19.79 19.33 0 13 18 24 1,385
#Negative 6,455 35.75 29.74 1 24 33 43 1,975

#Length 6,455 1,717.58 1,497.64 206 1,369 1,616 1,881 111,162
Positivity, % 6,455 1.16 0.39 0 0.89 1.12 1.39 3.12

Negativity, % 6,455 2.09 0.64 0.33 1.63 2.03 2.46 5.87
Pessimism, % 6,455 0.93 0.83 −1.88 0.36 0.89 1.44 5.32

Dow, % 6,455 −0.03 1.42 −13.72 −0.62 0 0.57 14.27
Expansions

#Positive 20,994 18.51 8.43 0 13 18 23 99
#Negative 20,994 31.48 14.02 0 22 30 39 164

#Length 20,994 1,541.84 492.15 36 1,285 1,506 1,697 10,220
Positivity, % 20,994 1.21 0.43 0 0.90 1.17 1.48 3.70

Negativity, % 20,994 2.05 0.68 0 1.57 1.98 2.45 6.64
Pessimism, % 20,994 0.84 0.89 −3.14 0.24 0.78 1.38 6.64

Dow, % 20,994 0.04 0.94 −25.63 −0.42 0.05 0.51 9.67
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2.2 Stationarity of Term Counts and Sentiment Measures

Text-based variables serve as inputs into a variety of econometric models. These econometric

models either directly assume that the inputs are stationary or rely on methods requiring

stationarity for parameter estimation. In this section, I demonstrate that the news sentiment

measures are often nonstationary, regardless of the construction methodology (e.g., simple

frequency or AI/ML). Nonstationarity of the measures is inherited from the underlying

building blocks such as term counts and text lengths. I also document that it is not clear

how to test the measures, term frequencies, or term counts for stationarity. Conventional

unit root tests, such as the ADF and KPSS procedures, frequently yield inconsistent results.

When visual indicators are used as a tiebreaker, the KPSS test appears to be more reliable

than the ADF test for detecting nonstationarity in text-based variables.

Table 2 shows the results of testing term counts and term frequencies for stationarity

using the ADF and KPSS tests. These tests yield inconsistent conclusions. For all term

counts and frequencies, the null hypothesis is rejected under all three specifications of the

ADF test: presence of a unit root, a unit root without a trend, and a unit root without a

trend or drift. At face value, this suggests that there is no unit root present and that the

time series are likely stationary. On the other hand, the KPSS test reaches the opposite

conclusion. The null hypothesis of the KPSS test is trend stationarity, which is rejected for

all term counts and sentiment measures. It is rare for the ADF and KPSS tests to produce

this pattern of contradictory outcomes. For example, when the KPSS test was empirically

validated using monthly and quarterly economic data, only 1 (industrial production) out of

14 time series displays inconsistent ADF and KPSS results (Kwiatkowski et al. (1992)).

One possible explanation for this phenomenon is suggested by Jiang et al. (2020), who

observe that the KPSS test “always rejects stationarity or has no nontrivial power at high

frequency.” If this explanation applies here, then a conventional numeric variable observed

at a similarly high frequency (daily) should exhibit similar behavior. To demonstrate that

the frequency alone is insufficient to account for the inconsistent ADF and KPSS outcomes,

I include daily Dow log-returns alongside term frequencies and counts (Table 2). Although
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daily Dow log-returns match the frequency of the news-based variables, the ADF and KPSS

tests agree. Next, to provide further evidence supporting the validity of KPSS test results, I

compute yearly arithmetic means of article lengths and the corresponding yearly pessimism

frequencies. To make a visual comparison and highlight the time dependency of the text

characteristics, I place these means alongside the Dow log-returns, which are aggregated

similarly and represent a known stationary variable. In line with the KPSS test, the article

lengths and term frequencies appear non-stationary, particularly when compared to the daily

Dow log-returns (Figure 1). Specifically, text-based time series do not oscillate around a sta-

ble value; their respective means are time-dependent. Using the counts of terms (#Positive,

#Negative) instead of the article lengths or relying on another sentiment measure (for ex-

ample, replacing Pessimism with either Positivity or Negativity) does not affect the findings.

Overall, this behavior of the time series suggests that the type of source material (text) is a

major contributor to the inconsistent ADF and KPSS outcomes.

Table 2: Stationarity of Financial Term Counts and Sentiment Measures

This table tests raw term counts and sentiment measures (n=27,449 days) for stationarity using
ADF and KPSS tests. #Positive, #Negative, #Length are term counts. Positivity, Negativity,
and Pessimism are frequency measures defined as a term count divided by text length (e.g. Pos-
itivity=#Positive/#Length). ADF test includes both intercept and trend, the number of lags is
selected using AIC. ADF null hypotheses: presence of a unit root (τ3), unit root without trend
(ϕ3), unit root without trend and without drift (ϕ2). The number of lags for KPSS test is set to
4(T/100)0.25; KPSS null hypothesis is trend-stationarity. Reported critical values (cval) are at 1%
level. The results are robust to the lag selection.

ADF KPSS

τ3 cval ϕ2 cval ϕ3 cval τ cval
#Positive −104.33 −3.96 3,628.46 6.09 5,442.69 8.27 2.25 0.22

#Negative −96.94 −3.96 3,132.46 6.09 4,698.70 8.27 4.19 0.22
#Length −107.39 −3.96 3,844.23 6.09 5,766.35 8.27 3.73 0.22

Positivity, % −97.21 −3.96 3,150.11 6.09 4,725.17 8.27 2.54 0.22
Negativity, % −89.08 −3.96 2,645.28 6.09 3,967.92 8.27 2.74 0.22
Pessimism, % −90.50 −3.96 2,730.18 6.09 4,095.27 8.27 3.43 0.22

Dow, % −118.71 −3.96 4,697.30 6.09 7,045.95 8.27 0.03 0.22
Note: Market (Dow) returns are included for reference, a known stationary variable passes
both tests.
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Figure 1: Pessimism and Financial Article Lengths

This figure displays yearly arithmetic mean of article lengths and a corresponding sentiment measure
constructed from daily data. Date (year in which the values are averaged) is on the x-axis, article
length (#Length) or sentiment measure (Pessimism) are on the y-axes. Yearly arithmetic average
of daily Dow log-returns, a known stationary variable, is included for comparison.
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The inconsistent ADF and KPSS conclusions, along with the visually nonstationary be-

havior of the news-based variables, may also stem from the measure construction algorithm.

It is possible that more advanced algorithms, such as those based on machine learning or

artificial intelligence, could account for the non-stationarity of inputs. To investigate this

possibility, I test multiple news-based measures that involve ML or AI at any stage of the

construction process to determine whether these algorithms produce variables with statisti-

cal behavior similar to simple term frequencies. The results of this analysis are presented in

Table 3.

I begin with a measure of daily news sentiment proposed in Shapiro et al. (2022). This

measure uses an advanced, application-specific lexicon that assigns sentiment scores to

domain-specific (economics/finance) terminology. Unlike simple term frequencies, the lexi-

con in Shapiro et al. (2022) incorporates “pointwise mutual information” accounting for the

likelihood of an individual word influencing the overall sentiment of a sentence. The overall

sentiment of a sentence is classified using VADER, an advanced machine learning algorithm

specifically designed for sentiment analysis (see Hutto and Gilbert (2014)). Despite these

methodological enhancements, this sentiment measure is stationary according to the ADF

test but non-stationary according to the KPSS test, mirroring the results displayed by simple

term frequencies.

Next, I evaluate a daily news-implied volatility measure (NVIX) proposed in Manela

and Moreira (2017). NVIX is based on a support vector regression model, which uses daily

news to predict the observed volatility (VXO index). The model is trained and tested on

periods when both news and the VXO index are available, and it uses news alone to estimate

volatility during periods when the VXO index is unavailable. NVIX is further decomposed

into seven time series: government, financial intermediation, natural disasters, stock markets,

war, and unclassified. Most of the news-implied volatility measures are stationary according

to the ADF test but non-stationary according to the KPSS test. Specifically, six out of the

seven time series, including the headline NVIX, show inconsistent results between the ADF

and KPSS tests. For the natural disasters time series, the KPSS null hypothesis is also
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rejected when the confidence level is relaxed from 1% to 2.5%.

Finally, I test the news-based measures of economic conditions spanning 180 topics pro-

posed in Bybee et al. (2024). To automatically extract and model the topics, the authors

use Latent Dirichlet Allocation, an advanced unsupervised machine learning technique. All

daily measures (180/180) are stationary according to the ADF test. However, the KPSS test

indicates that 178 out of 180 daily measures are nonstationary.3 These unit root test conclu-

sions are identical to those of the term counts, frequencies, and other news-based measures

examined thus far.

Table 3: Stationarity of Measures Constructed from Economic Texts

This table shows the results of testing measures derived from financial texts using advanced machine learning
or artificial intelligence methods for stationarity. A measure is labeled as stationary according to the ADF
test in “Is Stationary?” column if all of the following null hypotheses are rejected at 1% level: presence of
a unit root, unit root without trend, unit root without trend and without drift. A measure is labeled as
non-stationary according to the KPSS test in “Is Stationary?” column if trend stationarity is rejected at
1% level. The number of lags for the ADF test is selected using AIC, and for the KPSS test it is set to
4(T/100)0.25. The results are robust to the lag selection.

Is Stationary?
Freq. ADF KPSS Measure Construction

News Sentiment from Shapiro et al. (2022), Jan. 1980 – Dec. 2024
Daily Yes, 1/1 No, 1/1 The measure is constructed using an application-specific

dictionary.
News-implied Volatility from Manela and Moreira (2017), Jul. 1889 – Mar. 2016

Daily Yes, 7/7 No, 6/7 The measure is constructed from term frequencies using
a support vector regression to predict the actual
observed volatility (VXO index).

Business News, Multiple Topics from Bybee et al. (2024), Jan. 1984 – Jun. 2017
Daily Yes, 180/180 No, 178/180 Latent Dirichlet Allocation (LDA) is used to identify

topics and construct measures. Topic identification is
unsupervised and depends on word co-occurence. An

Monthly Yes, 162/180 No, 160/180 individual measure is a fraction of an article dedicated
to each topic. Monthly frequency is achieved by
aggregating daily texts.

3Two remaining variables, “Credit Cards” and “Changes,” require relaxing the confidence level to 2.5%
and 10%, respectively, for the KPSS test to reject the null hypothesis.
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These measures of economic conditions are available at both daily and monthly frequen-

cies, sharing the same relevant characteristics such as the construction algorithm, underlying

source material, and time period. As a result, it is possible to isolate the effect of frequency

on stationarity testing while keeping all other conditions unchanged. The ADF and KPSS

tests yield inconsistent results for 142 out of 180 monthly measures. Specifically, 160 mea-

sures are identified as nonstationary by the KPSS test, while 162 are classified as stationary

by the ADF test. Notably, 20 monthly measures are stationary according to both the ADF

and KPSS tests, an outcome that is not observed for the daily news-based measures. The

inconsistent unit root test outcomes likely arise from the combination of high frequency and

text-based source material. After all, the ADF and KPSS tests are consistent at the daily

frequency for conventional numeric measures such as Dow log-returns and some monthly

text-based variables. On the other hand, measure construction algorithms and their level of

sophistication (term frequency or ML/AI) do not seem to affect the stationarity of resulting

variables.

Overall, it is likely that the combination of high frequency and the type of underlying

source material (text) is responsible for the inconsistent ADF and KPSS test outcomes. It

is also important to note that stationarity is rarely tested explicitly, even when assumed by

the econometric model. In the rare instances when it is tested, researchers often rely solely

on the ADF test. For example, Kalamara et al. (2022) present only the ADF test results.

Ideally, all text-based measures should include visual evidence of stationarity and undergo

testing with both the ADF and KPSS procedures. In the absence of such testing, economic

conclusions, or any form of inference, should rely on statistics that are robust to the effects

of nonstationarity.

2.3 Cointegration of Term Counts

Lexicons that classify terms by tone, such as those proposed in Loughran and McDonald

(2011) and Garcia et al. (2023), are notably broad. For instance, consider the words “acci-

dent,” “serious,” “achieve,” and “attain,” along with their conjugations such as “accidental.”
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According to the Loughran and McDonald (2011) dictionary, “accident” and “serious” are

categorized as negative, while “achieve” and “attain” are classified as positive. These terms,

along with many others like them, are very common and appear across a wide range of

contexts, making them difficult to avoid unless deliberately excluded. Consequently, as the

length of the text increases, the count of tonal terms inevitably rises. This observation sug-

gests a shared underlying stochastic trend, i.e., a cointegrating relationship between term

counts and text lengths. This cointegrating relationship is formally verified using Johansen

(1991) and Phillips and Ouliaris (1990) tests; the results are presented in Table 4.

For all possible term count pairings (e.g., #Negative and #Length) and all specifications

of the Johansen (1991) test, critical values far exceed the 1% threshold (7,694.29>16.26,

17,342.49>30.45, ..., 9,269.33>23.65), indicating the presence of at least one cointegrating

vector. This conclusion is confirmed using the Phillips and Ouliaris (1990) procedure; sim-

ilarly, the observed test statistics greatly exceed the 1% critical values (150,771.70>55.19,

..., 128,938.60>102.02). Statistically, these results confirm the existence of a long-term re-

lationship between tonal term counts and text lengths. This finding is expected, especially

considering the editorial process. The same author (or group of authors) writes newspaper

articles subject to the publisher’s constraints, primarily the word count of a column, which

simultaneously limit both the counts of tonal terms and the article lengths.

The cointegrating relationship between term counts and text lengths imposes limitations

on the construction of text-based variables or their use in subsequent (second stage) eco-

nomic models. For instance, term frequencies are often used as standalone variables (e.g.,

Goldman et al. (2024)), but simple division does not explicitly incorporate error correction

or account for the cointegration between term counts and text lengths. Additionally, this

cointegrating relationship can undermine the effectiveness (or even violate the assumptions)

of some common econometric models used in conjunction with text-based variables. For

example, regularized regression techniques such as LASSO, Ridge, and Elastic Net tend to

perform poorly in the presence of multicollinearity. There are three potential solutions: ad-

just the construction procedure such that text-based variables satisfy the assumptions of
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existing methods, jointly estimate the variables and the subsequent model, or employ robust

statistics (or, when possible, bias correction) in the second stage. The rest of this paper

focuses on robust statistics, as it is the only approach that does not require the reestimation

of existing news-based variables.

Table 4: Cointegrating Relationship Between Term Counts and Text Lengths

This table reports the results of testing the individual term counts and text lengths (n=27,449 days)
for cointegration using Johansen (1991) and Phillips and Ouliaris (1990) procedures. Both tests
have a null hypothesis of no cointegration; alternative is a presence of cointegrating relationship.
In Johansen (1991) test, “r” denotes a number of cointegrating vectors, critical values are from
Osterwald-Lenum (1992), both trace and and eigenvalue-based tests are reported. Pz version of the
Phillips and Ouliaris (1990) test is used, the input series are either unadjusted or demeaned with
respect to a linear model with an intercept.

Critical Values

Variables Type Test Statistic 10% 5% 1%

Johansen Test

#Positive, #Length Trace, r ≤ 1 7,694.29 10.49 12.25 16.26
#Positive, #Length Trace, r = 0 17,342.49 22.76 25.32 30.45
#Positive, #Length Eigen, r ≤ 1 6,546.38 10.49 12.25 16.26
#Positive, #Length Eigen, r = 0 16,275.68 22.76 25.32 30.45

#Negative, #Length Trace, r ≤ 1 6,844.69 10.49 12.25 16.26
#Negative, #Length Trace, r = 0 16,114.02 22.76 25.32 30.45
#Negative, #Length Eigen, r ≤ 1 7,694.29 10.49 12.25 16.26
#Negative, #Length Eigen, r = 0 9,648.19 16.85 18.96 23.65

#Positive, #Negative Trace, r ≤ 1 6,546.38 10.49 12.25 16.26
#Positive, #Negative Trace, r = 0 9,729.30 16.85 18.96 23.65
#Positive, #Negative Eigen, r ≤ 1 6,844.69 10.49 12.25 16.26
#Positive, #Negative Eigen, r = 0 9,269.33 16.85 18.96 23.65

Phillips–Ouliaris Test

#Positive, #Length Pz, Unadjusted 150,771.70 33.93 40.82 55.19
#Negative, #Length Pz, Unadjusted 173,385.80 33.93 40.82 55.19

#Positive, #Negative Pz, Unadjusted 156,394.40 33.93 40.82 55.19

#Positive, #Length Pz, Demeaned 129,157.70 71.96 81.38 102.02
#Negative, #Length Pz, Demeaned 142,314.70 71.96 81.38 102.02

#Positive, #Negative Pz, Demeaned 128,938.60 71.96 81.38 102.02
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3 Business Cycle and Return Predictability

3.1 Robust Inference

Creating variables from text, be it using simple term frequency or advanced AI/ML algo-

rithms, is usually only the first stage of the analysis. More often, the focus is on uncovering

a potential underlying relationship with other financial or economic variables. This relation-

ship is usually investigated by employing a separate econometric model (second stage) where

text-based variables are just one of the inputs and are treated exactly in the same way as

conventional numeric data. However, due to their unknown statistical properties, including

text-based variables may violate the assumptions behind the second-stage econometric model

or invalidate statistical significance calculations.

Both of these issues are illustrated using the main result of Garcia (2013): “The pre-

dictability of stock returns using news’ content is concentrated in recessions.” This con-

clusion is drawn from the relative magnitudes of regression coefficients in recessions and

expansions; statistical significance is based on the White (1980) standard errors. Nonethe-

less, the news-based sentiment measures are nonstationary at a daily frequency. In the worst

case, nonstationarity may lead to nonsensical estimates of the regression coefficients or R2

values, thereby challenging the economic conclusion. Furthermore, additional measurement

error (e.g., sampling, text processing) from the first stage propagates into the second stage,

leading to the imputed regressor problem (Pagan (1984), Murphy and Topel (1985)). Im-

puted regressors make OLS standard errors and common covariance adjustments (White

(1980), Newey and West (1987), etc.) inapplicable; standard errors fail to account for the

additional estimation uncertainty introduced in the first stage. From a financial perspective,

this issue affects the interpretation of regression coefficients by making it impossible to de-

termine whether a shock to the sentiment measure leads to a corresponding nonzero equity

market response.

In this section, using the same nonstationary measures, I demonstrate that robust infer-

ence methods lead to the opposite findings. In fact, daily news sentiment forecasts stock
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market returns at least as effectively in both recessions and expansions, with some evidence

suggesting better predictability during expansions. The “All Controls” panel of Table 5

replicates Garcia (2013) and includes the estimates of the following model:

Rt = βMMt−1 + Controls+ ϵ.

The controls (“Controls” in the formula above) include four additional lags of the sentiment

measure (Mt−1, ...,Mt−5), five lags of Dow log-returns (Rt−1, ..., Rt−5), five lags of squared

Dow log-returns (R2
t−1, ..., R

2
t−5), and day-of-the-week indicators. The sentiment measures

are normalized to have zero mean and unit variance. As a result, prediction betas can be

interpreted as the market response to a one-standard-deviation sentiment shock.

Table 5: Business Cycle and Return Predictability

This table includes the estimates of Rt = βMMt−1 + Controls+ ϵ regressions. Full set of controls
(“All Controls”) is the same as in Garcia (2013) and include additional 4 lags of the sentiment
measure (Mt−1...Mt−5), 5 lags of Dow log-returns (Rt−1...Rt−5), 5 lags of squared Dow log-returns
(R2

t−1...R
2
t−5), and day of the week indicators. Reduced set of controls includes one lag of Dow

log-returns and squared Dow log-returns (Rt−1, R
2
t−1) while keeping all else the same. Statistical

significance of βM is computed using White (1980) procedure. MAE is mean absolute error; statis-
tical difference between the MAE in recessions and expansions (“Rec. vs. Exp. MAE p-val.”) is
established using two-sample Welch’s t-test. All p-values less than 0.001 are entered as 0.

Rec
vs

Recessions Expansions Exp
βM βM Adj.R2 MAE βM βM Adj.R2 MAE MAE

(bps) p-val. (%) (bps) (bps) p-val. (%) (bps) p-val.
All Controls

Positivity 7.75 0.0004 2.91 91.20 2.61 0.0002 1.78 64.10 0
Negativity −6.71 0.01 2.86 91.01 −3.30 0 1.80 64.10 0
Pessimism −9.73 0.0002 3.01 91.03 −4.07 0 1.85 64.09 0

Reduced Controls
Positivity 7.76 0.0005 0.74 91.44 2.35 0.001 0.88 64.27 0

Negativity −6.70 0.01 0.68 91.28 −2.72 0.0002 0.90 64.26 0
Pessimism −9.35 0.001 0.83 91.24 −3.41 0 0.94 64.26 0
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The relative magnitudes of equity market prediction betas form a statistical basis for

the economic conclusion in Garcia (2013): “The link between media content and Dow Jones

Industrial Average (DJIA) returns is indeed concentrated in times of hardship.” Specifically,

the magnitude of βM is larger in recessions than in expansions for all sentiment measures

(Table 5, “All Controls”: |7.75|>|2.61|, |–6.71|>|–3.30|, |–9.73|>|–4.07|). However, mean

absolute errors (MAE) lead to the opposite economic conclusion. For all sentiment measures,

MAE is consistently higher in recessions than in expansions, indicating worse predictive

performance. Regardless of the variable, the average daily prediction errors are 91 bps in

recessions and 64 bps in expansions; the difference is economically large and statistically

significant (Table 5, “All Controls”). Crucially, unlike the regression beta estimates, MAE is

a robust statistic that is unaffected by the nonstationarity of news-based sentiment measures.

Spurious regressions are sensitive to the choice of control variables and lag lengths. In

such cases, even minor changes to the specification can lead to unstable estimates or incon-

sistent R2 coefficients, reducing the reliability of economic analysis. Therefore, I introduce

an alternative specification in which the number of lagged Dow log-returns and squared

Dow log-returns is reduced to one while keeping all other aspects of the model unchanged

(Table 5, “Reduced Controls”). Compared to the original, the R2 coefficients in the alterna-

tive specification exhibit behavior inconsistent with the initial economic interpretation. In

the original specification, adjusted R2 coefficients are universally higher in recessions than

in expansions for all sentiment measures (Table 5, “All Controls”: 2.91>1.78, 2.86>1.80,

3.01>1.85). However, in the alternative specification, this relationship reverses; adjusted

R2 coefficients are universally lower in recessions (Table 5, “Reduced Controls”: 0.74<0.88,

0.68<0.90, 0.83<0.94). Meanwhile, the robust statistic (MAE) behaves exactly as expected.

MAE is consistently higher in recessions than in expansions (91>64) for all specifications

and sentiment measures.

By employing robust inference and conservative significance thresholds, it is possible

to add an extra layer of protection against the effects of a spurious regression without re-

specifying the model. To resolve the imputed regressor problem and further demonstrate the
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influence of nonstationary news-based measures on parameter estimates, I use the approach

described in Ibragimov and Muller (2010). This approach introduces a robust statistic,

tIM , which relies on the small-sample properties of Student’s t-distribution to account for

potentially heterogeneous data with an unknown correlation structure. The main idea behind

tIM can be informally stated as follows. For a significance level α ≤ 0.083, t-distribution with

a sufficiently low number of degrees of freedom is so heavy-tailed that it absorbs additional

uncertainty from the two-stage procedure. More formally, tIM requires the data to be divided

into a small number of groups (q), each representative of the full sample. The model of

interest is then estimated separately for each group, resulting in β̂ = {β̂1; β̂2; ...; β̂j}, where

j = 1, ..., q.

tIM =
√
q
β̂Avg − β0

sβ̂

β̂Avg = q−1

q∑
j=1

β̂j

s2
β̂
= (q − 1)−1

q∑
j=1

(β̂j − β̂Avg)
2

HNull: β = β0 is then rejected in favor of HAlt: β ̸= β0 if |tIM | > F−1
T ((1−α/2), q−1), where

F−1
T (p, df) is an inverse cumulative density function of the Student’s t-distribution with df

degrees of freedom. The statistic (tIM) is asymptotically valid when the individual groups (q)

are representative of the entire sample and the respective estimates (β̂j) are asymptotically

independent (Ibragimov and Muller (2010)).

I group individual observations based on whether the year is divisible by q. For q =

2, the first group consists of all daily observations from even years (year ≡ 0 (mod 2)),

while the second group includes all observations from odd years (year ≡ 1 (mod 2)). For

example, the stock market return and the associated sentiment measurement observed on

December 19, 1992 fall into group 1, whereas the same variables observed on December

19, 1993 belong to group 2. Model estimates using this arrangement are independent, yet

representative of the entire sample. Both groups span the same year range, and the individual
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daily observations are included in continuous, uninterrupted year-long blocks that retain the

original autocorrelation structure. The groups are defined similarly for q = 4: year ≡ 0

(mod 4), year ≡ 1 (mod 4), year ≡ 2 (mod 4), year ≡ 3 (mod 4).

According to Ferson et al. (2003), spurious relationships and their effects are more pro-

nounced in small samples. By construction, tIM requires the sample to be divided into

smaller groups, thus increasing the likelihood of observing a disproportionate β̂j estimate. A

low number of degrees of freedom (q−1) does not allow any of β̂j to deviate much from β̂Avg

while retaining statistical significance. In other words, an outlier among β̂j would have a

large effect on tIM . For example, consider the estimate of the response of the equity market

to a change in pessimism in expansions (βPessimism = −4.07) and its statistical significance

(tIM=–3.02, q = 4). The estimate is not statistically significant at either the 1% or 5%

level; tIM = −3.02 falls inside both the 1% (±5.84) and 5% (±3.18) confidence intervals.

The associated β̂ is {−2.985099; −8.423142; −2.302426; −3.295377}. In this case, the sec-

ond group estimate, β̂j=2 = −8.423142, is considerably different from the rest. With only

q − 1 = 3 degrees of freedom, the outlier has a substantial effect on inference, rendering the

tIM statistic insignificant.

Table 6 provides tIM for all estimates in Table 5. Specifically, the βM = 0 null hy-

pothesis is tested against a βM ̸= 0 alternative. In recessions, none of the βM estimates

are significant at the 1% level, regardless of whether q = 2 or q = 4. When q = 2,

tIM = 30.99,−2.51,−4.14, 14.24,−2.72,−3.63 (depending on the sentiment measure), all

of which fall within the ±63.66 confidence interval. Similarly, when q = 4, the associated

tIM = 3.74,−3.14,−3.72, 3.29,−3.06,−3.24, all of which fall within the ±5.84 confidence

interval. This lack of statistical significance marks a stark departure from the White (1980)

p-values in Table 5, which are universally below 0.01. Taken together, these statistically

insignificant tIM values provide evidence against the economic conclusion in Garcia (2013).

It is difficult to argue that news-based sentiment predicts equity market returns in reces-

sions better than in expansions when the corresponding beta estimates are not statistically

significantly different from zero.
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Table 6: Robust Inference: Magnitude of Dow Response to Change in Sentiment

This table includes the results of testing βM = 0 against βM ̸= 0 hypothesis using robust Ibragimov
and Muller (2010) t-statistic (tIM ). βM comes from Rt = βMMt−1+Controls+ϵ regression. M is a
sentiment measure. Full set of controls (“All Controls”) is the same as in Garcia (2013) and include
additional 4 lags of the sentiment measure (Mt−1...Mt−5), 5 lags of Dow log-returns (Rt−1...Rt−5),
5 lags of squared Dow log-returns (R2

t−1...R
2
t−5), and day of the week indicators. Reduced set

of controls includes one lag of Dow log-returns and squared Dow log-returns (Rt−1, R
2
t−1) while

keeping all else the same. cval, 1% and cval, 5% are critical values associated with the α/2 = .005
and α/2 = .025 confidence intervals respectively.

tIM (2 Groups) tIM (4 Groups)
Rec Exp cval, 1% cval, 5% Rec Exp cval, 1% cval, 5%

All Controls
Positivity 30.99 9.66 ±63.66 ±12.71 3.74 11.01 ±5.84 ±3.18

Negativity −2.51 −2.07 ±63.66 ±12.71 −3.14 −2.24 ±5.84 ±3.18
Pessimism −4.14 −2.85 ±63.66 ±12.71 −3.72 −3.02 ±5.84 ±3.18

Reduced Controls
Positivity 14.24 7.94 ±63.66 ±12.71 3.29 13.06 ±5.84 ±3.18

Negativity −2.72 −1.68 ±63.66 ±12.71 −3.06 −2.11 ±5.84 ±3.18
Pessimism −3.63 −2.32 ±63.66 ±12.71 −3.24 −2.92 ±5.84 ±3.18

Although not directly shown here, when chosen appropriately, robust statistics are also

valuable during the variable creation in the first stage. For example, tIM can be paired

with AI/ML techniques that rely on partitioning the sample into smaller subsamples to as-

sess whether the model fit is sufficiently uniform during cross-validation (a machine learning

technique where a model is trained using subsets of the data and tested against an inde-

pendent sample not used in the training process). The statistic is computationally efficient,

so incorporating it into the first stage would not require additional resources. The main

drawback of tIM is the requirement to partition the input data into smaller groups, each

representative of the full sample. Implicitly, this is a sample size requirement: the full sam-

ple needs to be sufficiently large to allow for such grouping. However, AI/ML methods are

typically deployed when the volume of data is so large that it cannot be processed efficiently

by other means, making the drawback inconsequential from the practical perspective.
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3.2 Asymmetric Equity Market Volatility

Second-stage model specification often depends on the economic and statistical properties

of the inputs. At the same time, the properties of text-based variables created in the first

stage are generally unknown. As a result, interactions between variables in the second stage

can be misattributed; this is even more likely when employing a black-box methodology.

I directly show that equity market volatility, which is much higher during recessions than

during expansions, affects both forecast errors and regression beta estimates. Specifically, the

volatility and the spurious correlation between equity returns and sentiment jointly explain

the difference in regression beta magnitudes. Most importantly, higher prediction errors

correspond to periods of elevated volatility. An additional econometric model is required to

account for the time variation in volatility and isolate the connection between news sentiment

and Dow returns. After employing a GARCH(1,1) model, equity return forecast errors are

statistically equal during recessions and expansions across all sentiment measures.

Table 7: Model Specification and Return Predictability Statistics

This table shows that the estimates of equity market return predictability are unaffected by the
model specification and the choice of controls. The table includes the estimates of Rt = βMMt−1 +
Controls + ϵ (“All Controls”) and Rt = βMMt−1 + Controls + ϵ (“Only Sentiment”) regressions.
Full set of controls (“All Controls”) is the same as in Garcia (2013) and include additional 4 lags
of the sentiment measure (Mt−1...Mt−5), 5 lags of Dow log-returns (Rt−1...Rt−5), 5 lags of squared
Dow log-returns (R2

t−1...R
2
t−5), and day of the week indicators.

All Controls Only Sentiment

Recessions Expansions Recessions Expansions

βM MAE βM MAE βM MAE βM MAE

Positivity 7.75 91.20 2.61 64.10 8.80 91.64 3.43 64.45
Negativity −6.71 91.01 −3.30 64.10 −7.67 91.40 −3.94 64.43
Pessimism −9.73 91.03 −4.07 64.09 −9.96 91.37 −4.67 64.42

Table 7 presents two sets of predictive regressions: a full model with all controls (“All Con-

trols”) and a model without any controls (“Only Sentiment”). The “Only Sentiment” model

includes only one explanatory variable, a news-based sentiment measure (Rt = βMMt−1+ ϵ).
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The “Only Sentiment” model also retains all statistically and economically significant prop-

erties of the “All Controls” model. The magnitudes of prediction betas are consistently

larger during recessions than during expansions for all sentiment measures (Table 7, “Only

Sentiment”: |8.80|>|3.43|, |–7.67|>|–3.94|, |–9.96|>|–4.67|). Additionally, MAE is indistin-

guishable between the “Only Sentiment” and “All Controls” specifications. Regardless of the

specification, the average prediction error is approximately 91 bps during recessions and 64

bps during expansions (Table 7). In effect, the magnitudes of prediction betas and forecast

errors are unaffected by the choice of controls; they depend only on the economic state and

the choice of sentiment measure.

This statistical similarity implies that the conclusions drawn from the analysis of a simpler

“Only Sentiment” model would very likely translate to the full specification. The “Only Sen-

timent” specification is analytically simple, and prediction betas can be easily decomposed

into underlying components without any cross-terms. Such decomposition helps identify the

conditional (on the state of the business cycle) contribution of each component to the rela-

tive difference in the magnitude of prediction betas. According to the definition of regression

beta for a Rt = βMMt−1+ϵ model (Rt are Dow log-returns and M is a news-based sentiment

measure),

β̂M =
Cov(Measure,Dow)

V ar(Measure)
= ρ̂M,Dow

σ̂Dow

σ̂Measure

.

For example, consider the headline news-based sentiment measure, Pessimism, and the cor-

responding prediction betas: –9.96 bps during recessions and –4.67 bps during expansions.

β̂Pessimism,Dow = −0.06645
0.01410

0.9473
= −9.958 bps (recessions)

β̂Pessimism,Dow = −0.05052
0.00938

1.0146
= −4.671 bps (expansions)

Three factors determine the magnitude of the prediction beta: the volatility of the equity
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market (σ̂Dow), the correlation between news-based sentiment measure and Dow log-returns

(ρ̂M,Dow), and the volatility of a sentiment measure (σ̂Measure). The realized volatility of

Dow log-returns (σ̂Dow) is 0.01410/0.00938–1 ≈ 50.3% higher during recessions, the correla-

tion (ρ̂M,Dow) is 0.06645/0.05052–1 ≈ 31.5% higher, and the difference in measure volatility

(σ̂Measure) is 1.0146/0.9473-1 ≈ 7.2%. From these calculations, it is immediately clear that

the difference between σ̂Dow in recessions and expansions is the primary driver of the predic-

tion beta asymmetry. From a financial perspective, the volatility of the equity market (σ̂Dow)

is a market property completely independent of daily news. As a result, the asymmetry in

the magnitude of the prediction beta is mainly a market, not a daily sentiment property.

Table 8: Correlations between Sentiment Measures and Dow Returns

This table includes pairwise correlations between the news-based sentiment measures (Positivity,
Negativity, and Pessimism) and daily Dow log-returns (Dow), n=27,449. Correlations during reces-
sions (n=6,455) and expansions (n=20,994) are shown on the bottom panel above and below the
diagonal respectively. Recession indicator is NBER USRECD.

All Dates

Pos Neg Pess Dow
Positivity 1 −0.253 −0.673 0.043

Negativity −0.253 1 0.886 −0.045
Pessimism −0.673 0.886 1 −0.055

Dow 0.043 −0.045 −0.055 1

Recessions and Expansions

Pos Neg Pess Dow
Positivity 1 −0.264 −0.673 0.058

RecessionsNegativity −0.250 1 0.891 −0.051
Pessimism −0.673 0.884 1 −0.066

Dow 0.037 −0.043 −0.051 1︸ ︷︷ ︸
Expansions

The sentiment enters the estimate only through ρ̂M,Dow and σ̂Measure. Table 8 shows

pairwise correlations between the news-based sentiment measures and daily Dow log-returns.

These correlation coefficients are also economically insignificant (very low and close to zero)
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during both recessions and expansions. For example, the correlation between Positivity and

Dow log-returns is 0.043 for the entire sample, 0.058 during recessions, and 0.037 during

expansions. For Negativity, the respective values are –0.045, –0.051, and –0.043. For Pes-

simism, the corresponding values are –0.055, –0.066, and –0.051.

However, the correlation coefficient between the sentiment measure and equity market

returns (ρ̂M,Dow) is solely responsible for the sign of the prediction beta and its corresponding

economic interpretation. Figure 2 displays 5-year (5*252=1,260 daily observations) rolling

correlation between sentiment measures (Positivity, Negativity, Pessimism) and daily Dow

log-returns. Visually, for all measures, the rolling correlation coefficient neither fluctuates

around a fixed mean nor has a discernible trend. The sign of these correlation coefficients

also flips from positive to negative depending on the time period, indicating that the esti-

mate of a long-term relationship between news-based sentiment and equity market returns

is economically meaningless. After all, it is unlikely that the influence of daily sentiment

on equity market returns is persistent. Newspaper articles written long ago (e.g., 10 years

ago) have no impact on the market today, yet the past relationship between sentiment and

returns influences the estimate of the correlation coefficient.

The magnitude and sign of ρ̂M,Dow are economically meaningless and affected by the spuri-

ous relationship between the news-based measure and the Dow log-returns. The contribution

of σ̂Measure to the asymmetry of the prediction betas is very small and is influenced by the ar-

ticle length (which, depending on the viewpoint, may be disconnected from the sentiment).

This leaves the difference between σ̂Dow during recessions and expansions as the primary

driver influencing the difference in prediction betas (|βM,Recession| > |βM,Expansion|) across

the business cycle. As a result, the asymmetry in prediction betas is also observed for the

Positivity (8.80>3.43, Table 7) and Negativity (|–7.67|>|–3.94|, Table 7) measures. Stated

alternatively, the magnitude of the prediction beta is mainly determined by the relative mag-

nitude of equity market return volatility during recessions and expansions, independently of

the news-based sentiment or the choice of a sentiment measure.



Figure 2: 5-Year Rolling Correlation between Sentiment Measures and Dow

This figure displays 5-year (5*252=1,260 daily observations) rolling correlation between sentiment
measures (Positivity, Negativity, Pessimism) and daily Dow log-returns.
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3.2.1 Heteroskedastic Residuals and MAE

The difference in volatility between expansions and recessions results in unequal, state-

dependent variance of the residuals. In an OLS setting, this state-dependent variance affects

only the standard errors of the estimates, not the parameters themselves. However, this dif-

ference in volatility directly influences robust residual-based statistics. Without accounting

for it, mean absolute errors during recessions (a more volatile state) are generally higher than

during expansions. More formally, conditional heteroskedasticity of the residuals introduces

bias into MAE estimation, leading to unreliable economic inference.

To account for the difference in volatility between expansions and recessions, I follow

Garcia (2013) and use a GARCH(1,1) process to estimate the conditional variance of daily

returns. GARCH(1,1) performs well in a variety of financial settings (Hansen and Lunde

(2005)) and is a deterministic, heavy-tailed process (Bollerslev (1986)). As a result, it ac-

counts for volatility clustering and is also immune to data snooping. Then, to construct a

time series of normalized equity market returns, I rescale Rt by the GARCH(1,1) estimate of

conditional standard deviation (σ̂t). By construction, the resulting volatility-adjusted return

time series (Adj.Rt) has unit variance.

Rett = µt + ϵt; σ2
t+1 = ω + α1ϵ

2
t + β1σ

2
t

σ2
t ≡ V ar(ϵt)

Adj.Rt = Rt/σ̂t

I proceed by estimating the same predictive regression but replace the dependent variable,

Dow log-returns, with the volatility-adjusted time series (Adj.Rt = βMMt−1+ϵ). The results

are presented in Table 9. Judging from the MAE estimates, the predictive performance

of news-based sentiment is the same during recessions and expansions, regardless of the

measure. For example, the MAE estimates obtained using the headline Pessimism measure

are 74.82 and 74.63 bps in recessions and expansions, respectively. The difference between

these estimates is not statistically significant (p-value = 0.84).
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These estimates differ from the results obtained with the unadjusted Dow log-returns,

where the heteroskedasticity of residuals directly influences the MAE. The resulting economic

interpretation is also different: news-based sentiment predicts the volatility-adjusted equity

market return time series at least equally well (or poorly) during expansions and recessions.

This interpretation is subjective; it depends on whether asymmetric volatility is a market

property inseparable from the returns or a separate characteristic subject to an econometric

correction. In either case, the results here are contrary to Garcia (2013). Daily news-based

sentiment forecasts stock market returns at least as effectively during both recessions and

expansions, with some evidence suggesting better predictability during expansions. This

example highlights the importance of knowing the properties of the inputs (both economic

and statistical) and then choosing an appropriate methodology. If the methodology includes

black-box AI/ML algorithms, verifying the results, preferably externally, becomes essential

to ensure the validity of economic inference.

Table 9: Volatility-Adjusted Mean Absolute Error in Recessions and Expansions

This table presents MAE from predicting volatility-adjusted daily Dow Jones log-returns using
Adj.Rt = βMMt−1 + ϵ regression. MAE during recessions is compared to MAE during expansions;
p-values are calculated using two-sample Welch’s t-test; p-values less than 0.0001 are entered as
zero. Volatility-adjusted daily returns are obtained by fitting GARCH (1,1) model with a constant
mean (Rett = µt + ϵt) and time-varying volatility (σ2 = ω + α1ϵ

2
t + β1σ

2
t , σ2

t ≡ V ar(ϵt)). Adjusted
returns are Adj.Rt = Rt/σ̂t, where σ̂t is estimated in the previous step. GARCH(1,1) parameter
standard errors and t-statistics are robust.

MAE (bps)

Rec Exp p-value
Positivity 75.03 74.67 0.70

Negativity 74.84 74.64 0.83
Pessimism 74.82 74.63 0.84

GARCH(1,1) Parameters

Est. SE t-stat

µ 0.0004 0.0001 5.356
ω 0 0 0.040
α1 0.066 0.046 1.430
β1 0.939 0.041 23.141
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4 Informational Content of News Sentiment

4.1 In-Sample

It remains uncertain whether news-based sentiment measures contain additional informa-

tion beyond what is already captured by prior equity market returns. To address this, I

conduct a series of tests to assess the informational content (or lack thereof) of these mea-

sures and to demonstrate that the seemingly asymmetric predictability arises directly from

state-dependent equity market volatility. The analysis builds on the empirical framework

employed in Welch and Goyal (2008) and Goyal et al. (2024), and focuses on comparing the

predictive performance of sentiment measures to that of simple benchmarks derived solely

from historical returns.

Table 10 presents the results of the in-sample testing. Consistent with the previous sec-

tions of this paper, news-based sentiment measures (Positivity, Negativity, and Pessimism)

are used to forecast daily Dow Jones log-returns using the Rt = βMMt−1 + ϵ model. Two

simple benchmarks, derived solely from the equity market returns, are used for the evalu-

ation: historical average and one-day momentum. The historical average benchmark (la-

beled “Cnst”) is a Rt = βConst.1 + ϵ regression, and the one-day momentum (“Lag”) is a

Rt = βRt−1Rt−1 + ϵ model. Benchmark-relative predictive performance is determined by

comparing the mean absolute errors (MAE) of the sentiment measures to those of the bench-

marks. Once again, I use both unadjusted and volatility-adjusted daily returns (scaled using

the GARCH (1,1) model) to demonstrate the influence of the volatility asymmetry between

expansions and recessions. The results are reported in the “MvsC” column (sentiment mea-

sure vs. the historical average) and the “MvsL” column (sentiment measure vs. the one-day

momentum benchmark).

It is immediately clear that the predictive performance of the news-based measures is

statistically indistinguishable from that of the benchmarks (Table 10). All sentiment mea-

sures exhibit predictive performance comparable to both benchmarks, regardless of the state

of the business cycle or the return time series (with or without volatility adjustments). For
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example, when predicting equity market returns with the Pessimism measure, the MAE

during recessions is 91.37 bps for the unadjusted returns, and 74.82 bps after incorporating

the volatility adjustments. Under the same conditions, the historical average benchmark

MAEs are 91.67 bps and 75.07 bps, while the one-day momentum benchmark MAEs are

91.63 bps and 75.03 bps. The corresponding p-values, 0.87, 0.89, 0.83, and 0.86, show that

there is no statistically or economically significant difference in predictive performance be-

tween the sentiment measures and the benchmarks. Importantly, the benchmark strategies

exhibit the same asymmetric MAE behavior as the sentiment measures, with the asymmetry

disappearing after the volatility adjustments. This suggests that the observed asymmetric

predictive performance is a feature of the market itself, driven by the differences in volatility

between expansions and recessions. Alternatively stated, the asymmetric MAE behavior is

not a characteristic of the sentiment measures, but is instead inherited from the market.

Table 10: Benchmark-Relative In-Sample Return Predictability

This table compares the in-sample predictability of daily Dow Jones log-returns (with and without volatility
adjustments) between news-based sentiment measures and benchmarks derived from market returns. News-
based sentiment measures are Positivity, Negativity, and Pessimism; the equity market return forecasting
relies on a Rt = βMMt−1 + ϵ regression. The first benchmark is a historical average, Rt = βConst.1 + ϵ
(labeled “Cnst”). The second benchmark is one-day momentum, Rt = βRt−1Rt−1 + ϵ (“Lag”). Benchmark-
relative predictive performance is determined by comparing the sentiment mean absolute errors (MAE) to
the benchmark MAE. The results are reported in “MvsC” (sentiment measure against the historical average
benchmark) and “MvsL” (sentiment measure against the one-day momentum benchmark) columns; p-values
are calculated using two-sample Welch’s t-test. Volatility-adjusted daily returns are obtained by fitting
GARCH (1,1) model with a constant mean (Rett = µt+ϵt) and time-varying volatility (σ2 = ω+α1ϵ

2
t +β1σ

2
t ,

σ2
t ≡ V ar(ϵt)). Adjusted returns are Adj.Rt = Rt/σ̂t, where σ̂t is estimated in the previous step.

Recessions Expansions
MAE (bps) p-value MAE (bps) p-value

Meas Cnst Lag MvsC MvsL Meas Cnst Lag MvsC MvsL
Unadjusted Dow Returns

Positivity 91.64 91.67 91.63 0.99 0.99 64.45 64.47 64.41 0.98 0.95
Negativity 91.40 91.67 91.63 0.89 0.91 64.43 64.47 64.41 0.95 0.97
Pessimism 91.37 91.67 91.63 0.87 0.89 64.42 64.47 64.41 0.94 0.99

Volatility-Adjusted Dow Returns
Positivity 75.03 75.07 75.03 0.97 1.00 74.67 74.69 74.56 0.98 0.86

Negativity 74.84 75.07 75.03 0.84 0.87 74.64 74.69 74.56 0.93 0.90
Pessimism 74.82 75.07 75.03 0.83 0.86 74.63 74.69 74.56 0.92 0.91
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4.2 Out-of-Sample

Look-ahead bias is a potential issue in in-sample evaluation and, in this context, it may

overstate the predictive performance of the benchmarks. While forward-state information

is incorporated into the benchmark beta estimates (βConst. and βRt−1), sentiment measures

are constructed using only prior data. To address this issue, I also assess the benchmark-

relative out-of-sample predictive performance. I set the evaluation window to 1,260 trading

days, roughly corresponding to five calendar years (5*252=1,260), and then incrementally

re-estimate the predictive regressions and the benchmark strategies (historical average and

one-day momentum). Following Welch and Goyal (2008) and Goyal et al. (2024), I evaluate

out-of-sample predictive performance using R2
OOS = 1−MSEMeas./MSEBench., where MSE

represents mean squared error. The results are presented in Table 11.

Judging from Table 11, it is readily apparent that benchmark-relative predictive perfor-

mance does not differ between recessions and expansions. For example, without volatility

adjustments, Positivity, Negativity, and Pessimism slightly outperform the historical average

benchmark during recessions, posting R2
OOS values of 0.38%, 0.40%, and 0.54%, respectively.

However, the corresponding R2
OOS values during expansions are 0.25%, 0.32%, and 0.45%.

The differences between predictive performance during recessions and expansions is neither

economically nor statistically significant. Interestingly, none of the news-based sentiment

measures outperform the one-day momentum benchmark strategy; all corresponding R2
OOS

values are negative and, once again, statistically and economically indistinguishable between

recessions and expansions. Incorporating volatility adjustments does not affect the results;

there is still no difference in predictive performance between recessionary and expansionary

periods.

Overall, there is very limited evidence that news-based sentiment measures exhibit asym-

metric predictive performance depending on the state of the business cycle. Moreover, there

is little to no empirical evidence that news-based sentiment measures constructed using term

frequencies are useful for predicting daily market returns; they are unlikely to outperform

the benchmark strategies derived from historical market returns.
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Table 11: Out-of-Sample Return Predictability in Recessions and Expansions

This table compares the out-of-sample Dow Jones log-return (with and without volatility ad-
justments) predictability between news-based sentiment measures and benchmarks derived from
market returns. News-based sentiment measures are Positivity, Negativity, and Pessimism; the
equity market return forecasting relies on an incrementally re-estimated Rt = βMMt−1 + ϵ re-
gression over a fixed 5-Yr.*252=1,260 daily observations window. The first benchmark is a his-
torical average calculated by incrementally re-estimating Rt = βConst.1 + ϵ regression (labeled
“Constant”). The second benchmark is a momentum strategy calculated by incrementally re-
estimating Rt = βRt−1Rt−1 + ϵ regression (“Lag”). Benchmark-relative predictability is indicated
by R2

OOS = 1 − MSEMeas./MSEBench., where MSE is mean squared error. Volatility-adjusted
daily returns are obtained by fitting GARCH (1,1) model with a constant mean (Rett = µt+ϵt) and
time-varying volatility (σ2 = ω+α1ϵ

2
t +β1σ

2
t , σ2

t ≡ V ar(ϵt)). Adjusted returns are Adj.Rt = Rt/σ̂t,
where σ̂t is estimated in the previous step.

Out-of-Sample R2 (%)

Constant Lag

Recessions Expansions Recessions Expansions
Unadjusted Dow Returns

Positivity 0.38 0.25 −0.61 −0.72
Negativity 0.40 0.32 −0.60 −0.65
Pessimism 0.54 0.45 −0.46 −0.52

Volatility-Adjusted Dow Returns

Positivity 0.55 0.56 −0.86 −0.94
Negativity 0.99 0.58 −0.42 −0.91
Pessimism 1.21 0.85 −0.19 −0.65

4.3 Validation

In this section, I validate previous findings by demonstrating that they are not specific to

the time period, are not an artifact of the variable construction algorithm, and are replicable

using alternative news-based measures of sentiment. Specifically, I employ the daily news

sentiment index published by the San Francisco Fed (Shapiro et al. (2022)) and show that

it predicts Dow Jones log-returns (with and without volatility adjustments) worse during

recessions than during expansions. This index represents a stark departure from basic term

frequency calculations. Instead, it relies on an advanced, application-specific lexicon that
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scores domain-specific (economics/finance) terminology and accounts for the likelihood of

an individual word influencing the overall sentiment of a sentence. As part of its construc-

tion process, sentence-level sentiment is assessed using VADER, a specialized rules-based

sentiment analysis tool.

The San Francisco Fed daily news sentiment index covers the period from 1980 to the

present. The news-based sentiment measures employed throughout this paper cover 1905

to 2005. As a result, I consider two separate (though overlapping) time periods: 1980–2024

(the complete SF Index time series) and 1980–2005 (the period common to the SF Index,

Positivity, Negativity, and Pessimism). Predictive performance (MAE) is then evaluated

in-sample since, as demonstrated above, the results do not differ from those computed out-

of-sample. Consistent with the rest of this paper, I use both unadjusted daily Dow Jones log-

returns and log-returns scaled by the GARCH(1,1) model. To further assess the results and

provide an additional layer of robustness, I also include the previously employed benchmark

strategies: historical average and one-day momentum. Table 12 shows the results.

First, the complete SF Index time series (1980–2024) replicates the results previously

obtained in this paper using the Positivity, Negativity, and Pessimism sentiment measures.

The SF Index predicts daily Dow Jones log-returns less accurately during recessions than

during expansions, both with and without volatility adjustments. The MAE is 118.05 bps

during recessions and 68.11 bps during expansions without volatility adjustments, and 81.25

bps and 73.65 bps, respectively, with volatility adjustments. The difference is statistically and

economically significant. Similarly, the predictive performance of the benchmark strategies

mirrors that of the sentiment index and is worse during recessions. Both the historical

average and one-day momentum benchmarks have MAEs that are indistinguishable from

those of the SF Index. The errors are approximately 118 bps during recessions and 68 bps

during expansions without volatility adjustments, and 81 bps and 73 bps, respectively, with

adjustments.

The second time period under consideration (1980–2005) allows me to directly compare

all relevant predictors: the SF Index, historical average and one-day momentum benchmark
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strategies, and all news-based sentiment measures (Positivity, Negativity, and Pessimism).

Nevertheless, the results remain the same. Regardless of the predictor, MAE without volatil-

ity adjustments is approximately 85 bps during recessions and 71 bps during expansions.

With volatility adjustments, MAE during recessions and expansions is approximately 78 bps

and 74 bps, respectively. For all combinations of predictors, time periods, and return time

series, forecasting performance is worse during recessions – an empirical finding that directly

contradicts the conclusion of Garcia (2013).

Table 12: San Francisco Fed News Sentiment Index and Return Predictability

This table compares the predictability of daily Dow Jones log-returns (with and without volatility adjust-
ments) during recessions and expansions using the San Francisco Fed news sentiment index (Shapiro et al.
(2022), labeled “SF Index”). Predictive performance (MAE) is computed for two time periods: 1980-2024
(complete SF Index time series; n=11,296, 1,207 recessionary days) and 1980-2005 (overlap with the term
frequency measures; n=6,551, 788 recessionary days). MAE during recessions is compared to MAE during
expansions; p-values are calculated using two-sample Welch’s t-test; p-values less than 0.0001 are entered
as zero. The results are presented alongside the term frequency sentiment measures (Positivity, Negativity,
Pessimism) and two benchmarks derived from market returns. The first benchmark is a historical average,
Rt = βConst.1 + ϵ (labeled “Constant”). The second benchmark is one-day momentum, Rt = βRt−1Rt−1 + ϵ
(“Lag”). Volatility-adjusted daily returns are obtained by fitting GARCH (1,1) model with a constant mean
(Rett = µt + ϵt) and time-varying volatility (σ2 = ω + α1ϵ

2
t + β1σ

2
t , σ2

t ≡ V ar(ϵt)). Adjusted returns are
Adj.Rt = Rt/σ̂t, where σ̂t is estimated in the previous step. GARCH (1,1) model parameters are estimated
separately for each time period.

Unadjusted Dow Volatility-Adjusted Dow
MAE (bps) MAE (bps)

Rec Exp p-value Rec Exp p-value
1980-2024

SF Index 118.05 68.11 0 81.25 73.65 0.0004
Constant 118.02 68.11 0 81.25 73.65 0.0004

Lag 117.39 68.12 0 81.35 73.68 0.0003

1980-2005

SF Index 85.18 71.28 0 78.09 74.08 0.13
Constant 85.16 71.27 0 78.08 74.08 0.13

Lag 85.16 71.28 0 78.12 74.21 0.13
Positivity 85.20 71.31 0 78.13 74.13 0.13

Negativity 85.05 71.35 0 77.95 74.15 0.15
Pessimism 85.10 71.37 0 78.01 74.18 0.14
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5 Conclusion

Machine learning methods receive considerable criticism for being opaque. This issue runs

deeper: both the data fed into these algorithms and the resulting output often have unknown

statistical properties. In this sense, unstructured data, such as text, is as much a “black

box” as the advanced algorithms used to process it. Additionally, variables constructed

from unstructured data are rarely the ultimate goal. Instead, these measures are used as

inputs in subsequent economic models, which also typically incorporate conventional numeric

data. Interactions between heterogeneous variables remain largely unexplored in economic

settings, potentially leading to incorrect inference. This paper has two main contributions:

documenting the undesirable statistical properties of news-based variables that may adversely

impact economic inference (mainly nonstationarity), and demonstrating how existing robust

statistical methods can be used in conjunction with these measures to produce reliable

conclusions.

I illustrate incorrect economic inference arising from interactions between text-based and

conventional variables by revisiting Garcia (2013) study, which focuses on predicting equity

market returns during recessions and expansions using daily news sentiment measures. Using

robust statistical methods, I demonstrate that the main empirical finding of Garcia (2013),

“the predictability of stock returns using news’ content is concentrated in recessions,” is based

on a spurious relationship and an unaccounted-for interaction with the economic properties

of equity market returns. In fact, daily news sentiment forecasts stock market returns at

least as effectively during both recessions and expansions, with some evidence suggesting

better predictability during expansions.

I document that high-frequency news-based variables and their underlying building blocks,

such as text lengths and term counts, are often nonstationary, regardless of the construction

methodology. Nonstationarity is also difficult to detect; the high-frequency behavior of the

ADF and KPSS tests is often inconsistent, with the KPSS test generally being more reliable

than the ADF. Moreover, individual term counts and text lengths are often cointegrated – a

property that variable construction algorithms (especially AI/ML) or subsequent economic
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models may fail to take into account.

I propose two complementary approaches to address these issues. First, it is crucial to

pre-test text-based variables to ensure that they satisfy the assumptions of the subsequent

econometric models. Second, economic inference should be based on statistics robust to data

heterogeneity and unknown correlation structure. Such statistics provide an additional layer

of safety and are more likely to result in Type II error than Type I. In the context of equity

return predictability, residual-based robust statistics (such as mean absolute error and ro-

bust t-statistic introduced in Ibragimov and Muller (2010)), along with benchmarking, are

sufficient to ensure reliable economic inference. However, other financial and economic appli-

cations may require different statistical procedures, depending on the models and research

questions.

Finally, it is also important to note that unstructured data can be of higher quality than

conventional data. For example, Martinez (2022) finds that “autocracies overstate yearly

GDP growth by approximately 35%” by examining the deviations between self-reported GDP

and night-time luminosity. Nevertheless, it is not always possible to compare results relying

on unstructured data with those obtained solely using conventional numeric measures. The

data might not be measured frequently enough (with inflation expectations and sentiment

being classic examples) or may be withheld for a variety of reasons. Notably, Russia and

China have a track record of stopping the publication of unfavorable or politically sensitive

economic data, as illustrated by the recent invasion of Ukraine (“Russia Blocks Economic

Data, Hiding Effect of Western Sanctions,” The Wall Street Journal, Apr. 23, 2022), a spike

in youth unemployment (“China Slashes Rates, Suspends Youth Jobless Data as Economy

Signals Sharper Downturn,” The Wall Street Journal, Aug. 15, 2023), and economic reaction

to tariffs (“How Bad Is China’s Economy? The Data Needed to Answer Is Vanishing,” The

Wall Street Journal, Mat. 4, 2025). There may simply be no alternatives to alternative data;

a statistical safety layer that addresses the undesirable properties of unstructured data is a

step toward drawing reliable economic conclusions.
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