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Abstract

Statistical properties of unstructured data are largely unknown. I find that counts of
words (positive, negative, text length), their combinations, and measures constructed
from them are often non-stationary. For most of these time series, the ADF test rejects
the null hypothesis of unit root presence. On the other hand, the KPSS test rejects
trend stationarity. Visual evidence aligns with the KPSS outcome. This pattern is
more pronounced for daily data. A direct comparison between conventional frequency-
based measure of news sentiment and a stationary counterpart demonstrates the
economic impact. Predicting market returns with a non-stationary word frequency
measure results in contradictory empirical findings. Forecast errors and prediction
beta are higher in recessions than expansions at the same time. After accounting
for the stationarity, the magnitude of beta decreases by over 50%, implying that the
sentiment’s influence on the equity market returns has been severely overstated.
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1 Introduction

Are economic conclusions negatively affected by the unknown statistical properties of

unstructured data? Numeric representations of textual features such as word counts

(positive, negative, text length) are often non-stationary. Combinations of them (ra-

tio of relevant words to text length, difference between positive and negative terms,

etc.) are non-stationary as well. All these are basic inputs into variable construction

algorithms. Subsequently, the resulting measures inherit properties of the underlying

components. Accounting for the non-stationarity of news-based sentiment demon-

strates the ramifications. Contrary to prior studies, both market return and trading

volume predictions have higher forecast errors in recessions.

Unstructured data, such as text and images, gain an ever-increasing prominence

in economic variable construction, mainly due to high frequency and low cost. The

upside is availability, using text broadens the range of feasible empirical applications.

The downside is clear as well; there is a higher likelihood of flawed conclusions. The

problem is further exacerbated by the opacity of common measure construction pro-

cedures. Often enough, the underlying components (such as individual word counts)

are unavailable. Without assessing the inputs, it is impossible to tell whether the out-

put is accurate or is due to a spurious relationship.2 As a result, establishing common

statistical properties of the unstructured data and incorporating robust inference at

least partially mitigates the issue.

Employing robust inference provides an additional, perhaps most important, safety

layer. Regression betas, which are by far the most common measures, are strongly

impacted by non-stationarity, especially in small samples. On the other hand, statis-

tics unaffected by stationarity, such as mean absolute (squared) error, yield reliable

conclusions. For example, Garcia (2013) uses multiple different term frequencies

(counts of positive and negative words divided by text length) to proxy for the news-

based sentiment. The measures are non-stationary. The outcome of his analysis, “the

2In machine learning, this concept is often referred to as “GIGO” - garbage in, garbage out.
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predictability of stock returns using news’ content is concentrated in recessions”, is

based on relative magnitudes of regression coefficients. However, as demonstrated

later in this paper, the forecast errors (based on the exact same measures) are higher

in recessions. As a result, unknown and undesirable statistical properties (such as

non-stationarity) propagate through the estimation methods and drastically affect

the resulting economic conclusions.

Machine learning is commonly used in conjunction with the alternative data. The

inputs are rarely preprocessed and much more often are just “tossed” into a black

box. However, both basic and advanced learning algorithms are not devoid of assum-

ing stationarity, either explicitly or implicitly. For example, all models augmented

with the regularization or variable selection (such as LASSO, Ridge, Elastic net, etc.),

directly carry it over from the ordinary least squares. Alternatively, other machine

learning methods assume that the data generation process does not change over time.

Latent Dirichlet Allocation (Blei et al. (2003)) views documents as coming from a

random mixture over latent features (topics) with a fixed word distribution. Neural

networks follow suit. The network itself and its set of parameters are usually fixed

and do not change over time. While the machine learning methods might still provide

a good in-sample fit under non-stationarity, it is unlikely to carry over out-of-sample.

However, the importance of stationarity for the actual real-world performance de-

pends on the method and its intended application. Gentzkow et al. (2019) provide a

comprehensive overview of the text processing algorithms, underlying assumptions,

and usage cases.

From this perspective, cross-validation is especially difficult in a time-series setting

under non-stationarity. It is very hard to split a series into representative training

and testing samples as their properties would not be consistent. Finally, the model

fit is often evaluated using the R2 (or its derivatives), which may be affected by

a spurious relationship. Robust alternatives, such as mean absolute error, aren’t

always adaptable to the application at hand. Covariate shift (the distribution of
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inputs post-validation differs from that of testing and training samples) is perhaps

the best specific example. It is hard to tell if a trickle of post-validation data arriving

in real time falls within a stress-testing window. This problem is pronounced in

forecasting applications. New York Fed’s nowcasting was indefinitely suspended due

to unexpectedly extreme COVID data.3 It is telling that the issue befell the New

York Fed; the Federal Reserve system is responsible for supplying4 a comprehensive

set of recommendations and best practices on the model risk management. In this

light, less regulated or structured industries should be affected even more.

Consequently, it is important to pre-test both the inputs (if available) and a con-

structed measure. I check the stationarity of multiple prominent measures, all based

on the unstructured data, in order to demonstrate that there are common statistical

properties, independent from the intended applications. First, the testing procedure

matters greatly. While multiple stationarity tests are available, the results do not

necessarily agree. Given unstructured data or a measure constructed from it, with a

very few exceptions, the augmented Dickey-Fuller (ADF, Dickey & Fuller (1979)) test

rejects the null hypothesis of unit root presence. On the other hand, the Kwiatkowski-

Phillips-Schmidt-Shin (KPSS, Kwiatkowski et al. (1992)) test rejects trend station-

arity. Visual evidence aligns with the KPSS outcome. This situation is quite rare

compared to the conventional, structured data. For example, for a set of fourteen eco-

nomic variables in Kwiatkowski et al. (1992), only the industrial production series has

“evidence against both hypotheses”. It is followed by a suggestion to consider “other

alternatives, such as explosive roots, fractional integration, or stationarity around a

nonlinear trend”.

Based on the Johansen (1991) test, relevant term counts and text lengths are

cointegrated. This property is likely a characteristic of both natural language and a

3Federal Reserve Bank of New York, “The uncertainty around the pandemic and the consequent
volatility in the data have posed a number of challenges to the Nowcast model. Therefore, we have
decided to suspend the publication of the Nowcast while we continue to work on methodological
improvements to better address these challenges”.

4SR Letter 11-7; “Supervisory Guidance on Model Risk Management”.
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writing process. As the number of words in a text (length) goes up, so does the count

of positive and negative words. It should hold for a variety of applications, unless the

text is broken up into sections, each dedicated to a narrow topic written in specialist

jargon. Investigating further which specific documents may be characterized as such

is outside the scope of this paper, but Item 1A “Risk Factors” section of the 10-K

filings, on the surface, satisfies the criteria.

If word counts and text lengths are available, then the Engle & Granger (1987)

two-step method is directly applicable and yields a stationary measure. Unlike a sim-

ple ratio of word count to text length, the procedure accounts for non-stationarity.

However, it is not a “free lunch”; performing econometrically correct inference be-

comes more complex. The two-step method results in an imputed regressor measured

with a sampling error (Murphy & Topel (1985)). Such variables render inapplica-

ble commonly used covariance adjustments such as those described in White (1980)

and Newey & West (1987). The inference issue is addressed here in two separate

ways. First, a highly robust Ibragimov & Muller (2010) test statistic accounts for

the data imperfections by relying on the heavy tails of Student’s t-distribution with

a low number of degrees of freedom. Second, substituting quantile regression for the

OLS sidesteps the problem altogether. Quantile regression does not have a closed

form solution so the inference does not rely on covariance adjustments. Finally, the

quantile regression is also generally less sensitive to outliers.

The relationship between news-based sentiment and financial markets is explored

further by employing a stationary measure constructed using the Engle & Granger

(1987) two-step method. To make the results immediately comparable to prior stud-

ies, the stationary news-based sentiment measure relies on word counts from Garcia

(2013). It is used to forecast daily market returns and trading volume. At best,

the measure predicts about 4 basis points of the daily Dow returns. The estimate is

statistically significant but economically inconsequential. Harvesting the prediction

premium prior to the Internet would have been nearly impossible. Calling a broker
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(or faxing an order) involved high fees and a significant front running risk. On the

other hand, the link between aggregated trading volume and news-based sentiment is

both economically and statistically significant. The relationship is inverse; as nega-

tive sentiment rises by one standard deviation, trading volume falls by 1.5 percentage

points. Additionally, trading volume predictions have higher R2 values than the re-

turn forecasts suggesting that the market and news are connected, just not through

prices. These findings, at least partially, validate using trading volume as one of the

proxies for sentiment, as suggested in M. Baker & Wurgler (2007). Overall, a stronger

link between the sentiment and trading volume is consistent with the disagreement

models (Hong & Stein (2007)) where difference in opinions causes price signals to

simultaneously cancel each other and aggregate to a higher number of transactions.

2 Properties of prominent text-based measures

2.1 Text-based measures and their applications

Text is used for the creation of both long (spanning decades) and high frequency

(daily) variables. These measures often have no substitutes making it harder to

verify the economic conclusions. To that extent, I test multiple time series based

on the unstructured data to determine if there is a connection between construction

algorithm, topic, and resulting statistical properties. The focus is on stationarity as

it directly affects inference and economic interpretation of the regression coefficients.

For the majority of variable created from the unstructured data, the ADF test re-

jects the null hypothesis of unit root presence while the KPSS rejects trend-stationarity.

In general, this is a fairly rare scenario. For example, it was encountered only for the

industrial production time series (out of 14 total) during the empirical validation of

KPSS test (Kwiatkowski et al. (1992)). Kwiatkowski et al. (1992) did not resolve the

ensuing ambiguity writing “there is evidence against both hypotheses, and thus it is

not clear what to conclude”.
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As a result, to establish stationarity,5 the KPSS and ADF tests need to be con-

sidered jointly. Any outcome other than simultaneously rejecting the null (ADF)

and failing to reject the null (KPSS) indicates a potential issue. If necessary, visual

evidence acts as a tiebreaker. Based on these criteria, most of the measures in (Table

1) are non-stationary. The stationarity does not appear to be dependent on the topic

or construction method but may be related to frequency (Table 1). Daily measures

created from the unstructured data are almost guaranteed to be non-stationary. The

economic applications of all tested measures are briefly discussed below.

The main result of Garcia (2013) is that “the predictability of stock returns using

news’ content is concentrated in recessions”. The conclusion is obtained by compar-

ing the magnitudes of regression coefficients. Obaid & Pukthuanthong (2021) adopts

Garcia (2013) regression specification and concludes, “Photo Pessimism predicts mar-

ket return reversals and trading volume”. Shapiro et al. (2020) find that “text-based

measures of sentiment extracted from news articles perform well in terms of capturing

economically meaningful soft information”. S. R. Baker et al. (2016) rely on the re-

gression coefficients to validate their text-based measure. Specifically, “for every 1%

increase in our policy uncertainty index a firm with, say, a 50% government revenue

share would see its stock volatility rise by 0.11%”. Additionally, S. R. Baker et al.

(2016) economic policy uncertainty measure is a commonly used control. For exam-

ple, Manela & Moreira (2017) construct a text-based measure of implied volatility

that “predicts disasters” and also use S. R. Baker et al. (2016) time series as one of

the controls. Bybee et al. (2020), Caldara et al. (2020), Caldara & Iacoviello (2022)

create numerous time series from the unstructured data and use them to draw indus-

try and firm level conclusions. Economic importance, in most of these cases, depends

on the magnitude and significance of the coefficient of interest.

5Conditional on satisfying the underlying assumptions, mainly linearity.
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2.2 Statistical properties of word counts

The focus of subsequent analysis is on news-based sentiment. The findings, however,

are more general. News articles on economic activity are a common data source.

Intrinsic properties of texts such as lengths are independent from the topic. Sentiment

measurement has a long history of relying on both text and conventional, structured

data. As a result, it is possible to assess the validity of testing procedure, properties of

the measure components, and the connection to financial markets. The data6 is from

Garcia (2013). It includes three daily series spanning 1905-2005: counts of positive

words, negative words, and text lengths. They are sourced from two New York Times

columns, “Financial Markets” and “Topics in Wall Street”, then classified using the

Loughran & McDonald (2011) dictionaries.

The ADF and KPSS tests are again discordant (Table 2) for both word counts and

frequencies (Pos/Len, Neg/Len, and (Neg − Pos)/Len). The ADF test indicates

trend-stationarity, while the KPSS rejects it.7 Daily Dow Jones returns are included

to demonstrate that a known stationary variable passes both hurdles. Visual evidence

(Figure 1) supports the KPSS test8 outcome. The yearly average is changing over time

for all word counts and frequencies. Trend-stationarity requires the immutability of

the unconditional joint probability distribution with respect to a deterministic trend.

The yearly mean is not stable, there is no deterministic trend, and fluctuations do

not have a discernible pattern.

There is a resemblance between the word counts and text lengths (Figure 1) hint-

ing at cointegration. The individual measure components are also highly correlated

with the text lengths (Table 4). For example, the count of positive word and text

lengths have a correlation coefficient of 0.84. Following Gonzalo & Lee (1998) and

Haug (1996), the cointegration is formally tested using the Johansen (1991) proce-

6Obtained from Garcia’s website.
7The results (both ADF and KPSS) are robust to the number of lags.
8Stationarity is rarely explicitly tested, and even then the KPSS test is often overlooked. For

example, Kalamara et al. (2022) exclusively use the ADF test. Moreover, common textbooks do not
mention the additional tests. For example, Stock & Watson (2019) only includes the ADF test.
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dure. Test statistics for all possible pairwise combinations of word counts greatly

exceed critical values (Table 3) indicating an underlying cointegrating relationship.

Concerns regarding the Johansen test specification, “the Johansen estimator finds too

much cointegration when the lag order is misspecified, which may lead researchers to

examine long-run relations which are actually spurious” (Ho & Sorensen (1996)), are

likely irrelevant for the application at hand. The data has 27,447 non-missing daily

values, well exceeding 1000 observation threshold after which the aforementioned is-

sue is unlikely to apply. Moreover, the results are robust to the underlying vector

error correction model specification further alleviating the concerns.

The last property that is not unique to the text but is of utmost importance is

a high likelihood of extreme outliers. Unstructured data is significantly affected by

processing errors. Text manipulation, such as optical character recognition (OCR)

or document section identification, are imprecise. For example, the minimum of pos-

itive and negative words in an article is zero (Table 4), unlikely given the breadth

of Loughran & McDonald (2011) dictionaries which include both financial and non-

financial terms. Similarly, the minimum length of an article is just 36 words, po-

tentially indicating that only a header was processed. The maximum length of a

supposedly brief section is 111,162 words, more suitable for a page or an entire news-

paper.

Taken altogether, these results suggest a set of requirements that need to be taken

into account when transitioning from the individual word counts to a stationary mea-

sure. The procedure needs to be robust to outliers, implement a cointegration adjust-

ment, and yield a stationary variable. Ideally, it would also make use of data’s unique

properties. When working with the text, these properties might include power law

distribution of the word frequencies, stopword irrelevance, and context dependence.
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3 Constructing a text-based measure

The main goal is to provide an alternative to simple frequency measure (a ratio of word

count to text length) while accounting for the specific properties of text. There are

three main problems with the frequency. First, it does not guarantee the stationarity

of resulting measure. Second, the division does not account for non-stationarity of

the individual word counts or text lengths.

The third issue is more prominent in a cross-sectional setting. The frequency mea-

sure might inherit statistical properties of the inverse text length. It would happen

when the variation of text lengths within the sample greatly exceeds that of relevant

terms. Consider an extreme example where the numerator is constant. After the

division, all variation between the individual observations would come from the de-

nominator. It is antithetical to the intent behind the division by text length which

is just scaling. Moreover, the text length is correlated with financial characteristics

(such as firm size and complexity, see Loughran & McDonald (2014)) resulting in an

artificial introduction of bias. However, this issue is sometimes easy to diagnose. It

is sufficient to replace the numerator with a constant and check if the results change.

If they do not, then the issue is likely present.

Even though the news-based sentiment is of interest here, the procedure is gen-

erally applicable, can be implemented for any topic, and adapted for cross-sectional

applications (for example, by avoiding differencing). The first step accounts for the

outliers arising from the data processing errors. Top 1% of the individual component

observations are winsorized.9 Then the Engle-Granger two-step method is used to

create stationary variables. In this context, it entails regressing relevant word counts

on the text length and then differencing the residuals. The procedure can be used in-

sample (future sentiment levels affect current residuals) or out-of-sample (incremental

re-estimation).

9All subsequent results are robust. The outcome is not affected by keeping outliers as-is, varying
winsorization level (1%, 5%, 10%), or using trimming instead.
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log(WPos,t) = βPoslog(Lt) + ut; ePos,t = log(WPos,t)− β̂Poslog(Lt)

log(WNeg,t) = βNeglog(Lt) + ut; eNeg,t = log(WNeg,t)− β̂Neglog(Lt)

∆Post = ePos,t − ePos,t−1

∆Negt = eNeg,t − eNeg,t−1

∆Pesst = ∆Negt −∆Post

L is winsorized text length, WPos(Neg) are winsorized counts of positive (negative)

words, t is time index. Log transform serves a dual purpose. It reduces the impact of

outliers and accounts for the power law distribution of word frequencies. The change

in sentiment measures are ∆Post, ∆Negt, and ∆Pesst, scaled to have a unit variance.

The out-of-sample measure is constructed incrementally by including data only up to

t and repeating the procedure.

The measures are stationary under both ADF and KPSS tests (Table 5). The

statioanrity can be confirmed visually (Figure 2). Generally, these measures represent

a change (due to differencing) in relative (sum of the regression residuals is zero)

sentiment. When aggregated yearly, the top three pessimism peaks are in 1974, 1945,

and 2002. They correspond to a 1973–1975 recession (along with the 1973 oil crisis),

World War II, and a post dot-com bubble crash.

The Engle-Granger two-step method has a clear interpretation when applied to

text. The count of relevant terms (W) can be viewed as a function of importance (I)

and author-dependent attributes (A), W = f(I, A). The importance is not observ-

able unlike some of the stylistic characteristics.10 Assuming linear relationship (or

approximation) and treating text length as a proxy for style, residuals (e) are then

a measure of relevant word importance. Regressing away the text length is also an

adjustment “for impact across the entire collection” (Loughran & McDonald (2011)),

a viable alternative to the division in a cross-sectional setting. Linear regression is an

orthogonal projection so the procedure just removes the variation common to both

individual word counts and text lengths. This method can be further improved by

10See Loughran & McDonald (2014) for a discussion of style as it pertains to financial document
readability.

10



adding (to text length) more proxies for the idiosyncratic attributes. Count of unique

words, percentage of stopwords, frequency of negation, etc. can all be easily included

in the specification without affecting statistical properties and computational cost of

the measure construction.

Low computational overhead is especially important in a big data setting and can

potentially expand the number of applications. Simple variable construction algo-

rithms add value for the applications relying on vast quantities of data. Methods

such as Engle & Granger (1987) procedure are computationally inexpensive and have

known, well-defined properties. As a result, they can be incorporated as part of

a system that automatically pre-tests data (the KPSS test is also not demanding

computationally) and adjusts it as necessary in real time. Alternatively, these pro-

cedures would allow to process more text or do so quicker, a desired property for

both market makers and high-frequency traders (Ait-Sahalia & Saglam (2023), Pag-

notta & Philippon (2018)). Kalamara et al. (2022) findings support this view. The

find that a “simple count of the word uncertainty did almost as well as the more

complex Boolean methods”. The implications are twofold. First, the applicability of

unstructured data is limited by the informational content of text itself. Second, the

trade-off between method’s algorithmic computational complexity and the amount of

data processed may be skewed towards the quantity without losing much.

4 Dependent variables

4.1 Daily stock returns

While it is important to construct a stationary independent variable, all other inputs

need to be considered as well. However, both dependent and independent variables

need to be stationary to realize the benefits, mainly statistical significance of the re-

gression coefficient of interest. In this case, structural breaks are a particular concern,

even more so given that the data is daily. Rapach (2006) finds “evidence of struc-
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tural instability” in the quarterly U.S. stock returns. Much higher frequency daily

data is even more problematic. The underlying cause of potential breaks is especially

pertinent in the context of news-based sentiment. There is evidence of negative infor-

mation being deliberately released on Fridays (Doyle & Magilke (2009), Michaely et

al. (2016), Rawson et al. (2022)), consistent with the Monday effect. Strategic timing

makes it impossible to distinguish between the information-based effects and those

due to the change in sentiment.

Strict stationarity requires immutability of the unconditional joint probability

distribution with respect to time. Trading discontinuity is one potential issue; the

Monday effect is a well-documented example. The market is closed on Sundays, so

Mondays are not immediately preceded by a trading day. On Mondays, the mean

Dow11 return is -8.0 bps, compared to 2.4-6.0 bps on all other days (Table 6). Per-

haps most telling, the absolute lowest daily return, -25.6%, has been achieved on a

Monday. The lowest non-Monday return is -12.5%. Standard deviation of returns

is also different; it is much higher on Mondays at 139 bps. Pairwise similarity tests

confirm the disparity (Table 7). Based on both Kolmogorov-Smirnov and Anderson-

Darling tests, the empirical distribution of Monday returns is different from those of

all other days (Table 7, Panels A and B). The distributions of returns on Tuesdays,

Wednesdays, and Thursdays are statistically identical with a mixed evidence for Fri-

days. More generally, the distributions on days with and without prior trading days

(labelled “Breaks”) are not identical (Table 7, Panel C).

4.2 Trading volume

Trading volume is another dependent variable of interest. I aggregate individual

security data from CRSP12 and then adapt Campbell et al. (1993) procedure. So,

∆log(V lm)t = log(St)− log(St−1); St =
∑

∀j st,j, st,j is a number of shares traded in

11Daily Dow returns are from Historical SPDJI (daily) database, accessed through WRDS.
12CRSP data starts in 1926; only common shares (“SHRCD” begins with 1) are included.

12



stock j on day t. Similarly to stock returns, this measure can be viewed as a percent

change in the aggregate trading volume. ∆log(V lm)t is stationary, both visually and

according to the formal tests (Internet Appendix IA1). Aggregating the individual

security level data has some advantages over the exchange-level statistics. The data is

widely available and covers all exchanges thus avoiding the listing bias (for example,

technology and life sciences companies tend to list on the NASDAQ).

5 Predictive model

5.1 Model Specification

The model specification is based on Tetlock (2007) and Garcia (2013) but restricted to

one lag13 to account for the structural breaks. There are two separate dependent vari-

ables of interest: stock returns (Rt), and a change in trading volume (∆log(V lm)t).

Mt−1 is a lagged sentiment measure.

Rt = βMMt−1 + βRRt−1 + βRSqR
2
t−1 + C + ϵ

∆log(V lm)t = βMMt−1 + βV lm∆log(V lm)t−1 + βRRt−1 + βRSqR
2
t−1 + C + ϵ

Importantly, one lag is sufficient to capture most of the properties of both stock

returns (Starica & Granger (2005)) and trading volume (Campbell et al. (1993)).

Including more than one lag would result in structural breaks (weekends) in the

controls. For example, suppose there are two lags. The breaks would just “migrate”

to the independent variables, specifically Rt−1 and Rt−2 terms. When Rt is a Tuesday,

two lags would contain Monday and Friday, in turn encapsulating the undesirable

break. The same argument applies to a higher (than two) number of lags. A limitation

of one lag specification is inability to evaluate reversal effects.

13An Internet Appendix for Garcia (2013) also includes a one lag model with results identical to
the five lag version.
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5.2 Inference

Assuming stationarity requirement is met, economic importance can be assessed based

on magnitude and significance of the regression coefficient. However, the predictive

regression uses imputed measures generated using the two-step procedure. Multiple

stages increase the estimation uncertainty and affect the standard errors (Murphy &

Topel (1985)). Additionally, the correlation structure of sentiment measures is not

well-known. Asymptotic validity of the consistent variance estimators depends on

averaging over infinitely-long series of uncorrelated features such as disturbances or

clusters. These assumptions are unlikely to be satisfied by the measures constructed

from unstructured data.

A solution has been proposed in Ibragimov & Muller (2010). There exists a signif-

icance level (α ≤ 0.083) such that the tail of Student’s t-distribution is heavier than

that of a normal distribution by more than data or model imperfections. Alterna-

tively stated, t-distribution with a sufficiently low number of degrees of freedom is so

heavy-tailed that using it for inference is robust to the additional uncertainty from

the multi-stage procedure.

The Ibragimov & Muller (2010) method relies on partitioning the data and fitting

the model to a small number (q) of groups, ideally each retaining statistical properties

of the full sample. This yields β̂ = (β̂1, β̂2, ..., β̂j), j = 1, ..., q. HNull: β = β0 is then

rejected in favor of HAlt: β ̸= β0 if |tIM | > T−1((1 − α/2), q − 1). T−1(p, df) is the

inverse cumulative density function of the Student’s t-distribution.

tIM =
√
q
β̂Avg − β0

sβ̂

β̂Avg = q−1

q∑
j=1

β̂j

s2
β̂
= (q − 1)−1

q∑
j=1

(β̂j − β̂Avg)
2
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The main difficulty comes from partitioning the sample. Individual groups should

be representative of the entire sample. The associated estimates (β̂j) should also be

asymptotically independent. If these two conditions are satisfied, then the statistic

itself is asymptotically valid (Ibragimov & Muller (2010)).

A specific case of long, daily time series of returns fits both conditions when par-

titioned as follows. Consider categorizing observations by year based on divisibility

by 4. Group 1 then contains the observations where year ≡ 0 mod 4; Group 2

has year ≡ 1 mod 4, etc. Statistical properties of the entire sample are preserved

within each group as they span the same year range. To the extent possible, the

partitioning also makes group estimates (β̂j) asymptotically independent. Addition-

ally, statistical characteristics of the daily returns and trading volume are retained.

The individual daily observations are included in continuous, uninterrupted year-long

blocks. Economically, the scheme also keeps the business cycle dating; within a year,

the continuity of recessions and expansions is maintained.

6 Results

6.1 Economic implications of non-stationarity

Are sentiment-based daily stock market predictions better in expansions or recessions?

Existing literature does not offer an aligned view; Garcia (2013) finds that “the

predictability of stock returns using news’ content is concentrated in recessions”.

Notably, Garcia (2013) uses non-stationary predictors and makes the conclusion based

on relative magnitudes of the regression coefficients. Employing intraday data, Sun

et al. (2016) obtain the opposite result, “predictability is weaker during economic

recessions and largely dissipates during low trading volume days”. Moreover, in a

fairly restricted setting (effect of the FOMC decisions), Gardner et al. (2021) find

that “news has a bigger (smaller) effect on equity prices during bad (good) times”.

In general, it is dangerous to draw conclusions about relative predictability based
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on the beta magnitudes. Apart from non-stationarity, there are scaling issues, perhaps

best-demonstrated through a simple example. Suppose, in an otherwise identical

setting, the first predictor has a beta of 3, and the second one has a beta of 6.

Without affecting any predictive properties, one can multiply the second predictor by

2 thus causing the beta to fall to 3. A common rejoinder to this argument is that the

predictors are often standardized to have a unit variance. However, standardization

destroys informational content that is contained in the magnitude of the variance.

Alternatively stated, after standardization, even though the variances are the same,

the probability of observing a large swing differs. From this perspective, robust

methods provide more economically valuable conclusions since they also require less

variable transformations.

Table 8 includes the results obtained by predicting daily Dow returns with the

non-stationary measures of news-based sentiment, constructed exactly as in Garcia

(2013). Garcia (2013) measures are just word frequencies.14 The original conclusions

in Garcia (2013) are derived from the relative magnitudes of the prediction betas. All

results are computed three times (all days, all days excluding breaks, breaks only)

to demonstrate the ramifications of the structural breaks. The predictive specifica-

tion,15 Rt = βGGt−1 + βRRt−1 + βRSqR
2
t−1 + C + ϵ, differs from Garcia (2013) in the

number of lags. However, Garcia (2013) notes that the “choice of lags and controls in

specification does not affect any of the conclusions of the paper”, further confirmed

by comparing the results.

First, as in Garcia (2013), consider all days (Table 8, Panel B, “All Dates”)

without any exclusions. The one-lag model retains all key results. The magnitude

of βG is larger (e.g., for the pessimism, βG is -10.6 bps in recessions and -4.5 bps in

expansions) in recessions for all measures (Table 8, Panel B). They are also identical

for the positive and negative word frequencies (Table 8, Panel B) in both recessions

14Pos/Len, Neg/Len, and (Neg − Pos)/Len (positive sentiment, negative, pessimism), all scaled
to have zero mean and unit variance. Garcia (2013) averages word counts and text lengths over the
period without trading to account for the weekends and other breaks.

15Recessions indicator is USRECD from NBER.
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and expansions (3.3 and 3.5 bps in expansions, 8.6 and 8.0 bps in recessions). However,

there is already a warning sign; adjusted R2 is higher in expansions for all measures

(0.66% vs 0.40% for pessimism). It is unlikely for the predictability to be concentrated

in recessions and have a lower adjusted R2 at the same time.

Excluding breaks (Table 8, Panel B, “No Breaks”) further muddles the results.

Generally, they are similar to the above. However, the regression coefficient mag-

nitudes are no longer identical for the positive and negative word frequencies in re-

cessions (positive βG = 6.7, negative βG = −3.7). It is not surprising that exclud-

ing breaks affects the recessions more; spurious relationships are more pronounced in

small samples (Ferson et al. (2003)). Focusing on breaks (Table 8, Panel B, “Breaks”)

yields even more insight. There are two striking facts. First, the adjusted R2 values

go up by an order of magnitude regardless of the measure, a hallmark of spurious re-

lationships. Second, the relationship between R2 values in recessions and expansions

flips. For the breaks, R2 values are universally higher in recessions.

Ibragimov & Muller (2010) t-statistics provide some clarity. Despite the non-

stationarity of word frequencies, none of the tIM statistics are significant (Table 8,

Panel B) in recessions. It is not a statistical aberration. The finding holds regardless

of a predictor variable and whether the breaks are excluded or not. Consider the

combination of negative word frequency and all dates without exclusions. Then the

tIM is -2.157 (Table 8, Panel B, “All Dates”). The associated β̂ is (−0.000149;

−0.000415; −0.001550; −0.002422). One of the β̂ components, -0.000415, is much

larger than the others. There are only three degrees of freedom so one “partitioning

outlier” makes the tIM statistic insignificant.

In general, partitioning results in a small number of samples each having less

observations. Reducing the number of observations within each sample accentuates

spurious relationships. Meanwhile, Student’s t-distribution with a low number of

degrees of freedom does not allow for any of the β̂ components to significantly de-

viate from the mean while retaining the statistical significance. As a result, there
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are two scenarios where tIM is statistically significant. First, there isn’t a spurious

relationship and all components of the β̂ are sufficiently similar. Second, the effect of

non-stationarity is uniform and the components of β̂ are affected comparably. The

second scenario is rare but still feasible. In fact, it happens in expansions with the

positive word frequency as a predictor (Table 8, Panel B, “All Dates”). The tIM is

highly significant, standing at 13.7, but it is also associated with the lowest adjusted

R2 across all measures. As a result, it is likely spurious.

Taken altogether, the regression results obtained with the Garcia (2013) measures

are internally inconsistent. One way to check their validity is to use a robust, residual-

based statistic while keeping the non-stationary frequency measures. The comparison

between prediction errors in expansions and recessions is in Table 8, Panel A. The

forecast errors are statistically significantly lower16 in expansions, regardless of the

partitioning, a reversal of the original Garcia (2013) conclusion.

Finally, non-stationarity provides an alternative explanation for the high R2 values

and large test statistics observed across the applications of text-based sentiment.

Zhou (2018) notes that “in comparison with market- and survey-based measures, it

is surprising that measures based on textual analysis perform better by far”. His

explanation for the phenomenon is based on market inefficiency, claiming that “stock

market is likely to overlook information”. On the contrary, supposedly “better”

performance is due to a spurious relationship. Inefficiency is also not set in stone.

Equity prices are an imperfect gauge of information absorption. Price signals may

cancel out under the heterogeneous beliefs.

There are three main takeaways. The economic interpretation is affected by the

non-stationary measures and structural breaks. Sentiment-based daily Dow return

predictability is higher in expansions. Robust inference is a necessity; it either yields

a correct conclusion or is very likely to be statistically insignificant.

16See Internet Appendix IA2 for the prediction errors obtained with the stationary two-step sen-
timent measures. The results are the same, forecast errors are lower in expansions.
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6.2 Financial markets and news-based sentiment

Table 9, Panel C validates the out-of-sample predictive power of the stationary two-

step news-based sentiment measures. The out-of sample procedure follows Welch &

Goyal (2008). There is only one predictor (the measure of interest), performance is

evaluated using R2
OOS = 1 − MSESent./MSEHist.Avg., and a training period is set

to approximately 20% of the entire sample. All R2
OOS are greater than zero so the

stationary sentiment measures predict daily Dow returns and trading volume.

Table 9, Panels A and B iniclude the in-sample results. Over 1926-2005, the

Dow is predicted with an in-sample adjusted R2 of 0.09% to 0.19% depending on the

sentiment measure (Table 9, Panel A). Out-of-sample, the range is 0.06% to 0.15%

(Table 9, Panel C). Trading volume is also forecastable; in-sample R2 values are

0.07% to 0.69% (Table 9, Panel B), out-of-sample 0.06% to 0.68% (Table 9, Panel C).

Conditional on the 1926-2005 time period,17 the highest in-sample adjusted R2 for

the sentiment-based Dow predictability is 0.19%; for the trading volume, it is 0.52%

(Table 9, Panels A and B). In this setting, there is only one independent variable so

the R2 values may be compared directly across specifications. As a result, in-sample

look-ahead bias is immaterial since both R2 values and prediction errors are sized

similarly to the out-of-sample counterparts.

Table 10 provides results for the full predictive models with controls. The control

variables differ across the dependent variables and time periods, so the models are not

directly comparable. Even still, the predictability pattern stays the same. Using the

news-based sentiment, trading volume is easier to explain than the equity returns.

When predicting the daily Dow, the change in pessimism maximizes the adjusted

R2, at 0.27%. The change in negativity does the same for the trading volume, with

the adjusted R2 getting to 2.5%. Coefficient estimates tell the same story. A one

standard deviation change in pessimism elicits the largest18 shift in market returns,

17Longest overlap between the equity returns and trading volume data.
18The measures capture predictability on the same days but some are more precise. See Internet

Appendix IA4.
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at 3.85 basis points (Table 10). Increasing the measure of negative sentiment by one

standard deviation leads to a 1.5 percentage point decrease in transactions (Table

10).

On the surface, 3.85 bps appear economically insignificant, especially considering

the historical cost and risks of implementing a corresponding trading strategy. Har-

nessing the premium would require calling a broker, paying a fee, waiting to place an

order, taking on front running risk (the news are not exclusive - someone else might

have done the same faster), counter-party risk, etc. However, there are also quiet,

low market movement days. For example, the tenth percentile of absolute returns is

9 bps (Table 6). On a relative basis, 3.85 bps is a large component (3.85/9=0.423)

indicating that the sentiment matters when the market movements are subdued. It

is possible that the repricing of fundamentals causes the outsized market movements

and the news-based sentiment is responsible for the small jitters.

Meanwhile, 1.5 percentage point decrease in the trading volume is economically

tangible. For reference, the mean daily change in trading volume is 1.52% with a

standard deviation of 20.8%. 1.5 percentage points can then be viewed as a dif-

ference between normal trading day and the market grinding to a halt. Granted,

changes in the trading volume are hugely variable, as indicated by the standard de-

viation, but those are also unlikely to be driven by the sentiment. Investors need to

readjust portfolios when their expectations change or the economic fundamentals get

repriced. From this perspective, just like with the market returns, the relationship

between trading volume and news-based sentiment is more prominent absent any

shocks. Therefore, M. Baker & Wurgler (2007) suggestion to use trading volume as

a proxy for sentiment can be improved. The trading volume needs to be conditioned

on a low market movement.

Trading volume predictability furthers the disconnect between the news-based

sentiment and market fndamentals. The trading volume is minimized with an increase

in negative sentiment (Table 10, the coefficient on change in negative sentiment is less
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than zero and statistically significant). First, there is less money available to use for

the discretionary trading. Second, during an economic distress, the fundamentals

are depressed with a very limited uncertainty about their state. Animal spirits are

secondary to the rational valuation, which is responsible for the majority of substantial

price changes and trading volume accumulation. Finally, bad times also involve more

external interventions such as the interest rate adjustments. All these frequent shifts

in the fundamentals are independent from the news and are not predictable. This

view is consistent with Mai et al. (2022), who find that “the majority of assets, trade-

based sentiment measures outperform their text-based equivalents for both in-sample

and out-of-sample predictions”. Actions are more directly linked to the economy,

while news may or may not precipitate any money movement to or from the financial

market.

Quantile regression provides additional evidence against the connection between

extreme market movements and the news-based sentiment. It serves a dual purpose:

to validate the OLS estimates (and their significance), and to check the behavior at

the tails. It does not have a closed form solution for the standard errors, is less likely

to be affected by the additional uncertainty from two-stage predictors, and is robust

to outliers. As expected, given the large sample size, the estimates (sign, magnitude,

and significance) of the conditional median (τ = 0.5) closely mirror the OLS (Table

10). For the daily Dow returns and the change in pessimism, the OLS regression

coefficient is -3.85 and the quantile regression is -3.98. Similarly, tIM statistics for the

OLS and quantile regression p-values19 are in accord.

Expanding the range of estimated quantiles (τ ∈ [0.1, 0.9], 0.1 increment) demon-

strates the stability of betas. The estimates20 are relatively flat (Figure 3) and do not

change with the quantile, regardless of whether the dependent variable is the daily

Dow returns or the change in trading volume. The finding is an update to Tetlock

19Since there are no closed form solutions, statistical significance for the quantile regression is
calculated using three different methods.

20See Internet Appendix IA3 for additional details.
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(2007), who found that the “effect of negative sentiment on the Dow appears to be

strongest near the extreme values of returns and sentiment”. Importantly, stable, flat

betas are consistent with the proposed relationship between the news-based sentiment

and market gyrations. Had the sentiment played a prominent role in the extreme re-

turns, the betas would have been tangibly different near the ends. Consequently,

relatively stable quantile betas provide further statistical evidence supporting the

importance of news on the quiet days with limited market movement.

Investor disagreement may potentially explain the aforementioned behavior. Het-

erogeneous actions are able to “generate a lot of trading activity even when prices are

not moving relative to fundamentals” (Hong & Stein (2007)). Opinion-based trans-

actions cancel each other out leading to a modest price change, if any at all. Unlike

prices, trading volume accumulates (instead of cancelling out) the opposing views, so

it is more sensitive and easier to predict than the returns. A negative relationship

between the sentiment and trading volume is also consistent with the disagreement.

As opinions get more aligned, there is less need to transact. At a firm-level, Chang

et al. (2022) demonstrates that the investor disagreement has an empirically tan-

gible effect. Taken altogether, these results show that the effects aggregate. The

disagreement may be responsible for the market-wide trading patterns.

7 Conclusion

Machine learning methods receive a lot of criticism for being opaque. The issue

stretches further; data that goes into these algorithms has unknown statistical prop-

erties. From this perspective, unstructured data itself is as much a “black box” as

the advanced algorithms used to process it.

Among many others, there are implications for the model risk management. The

data itself might lead to nonsensical results. Consequently, it is important to know

the assumptions underpinning employed algorithms and check if the inputs conform.
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Here, the focus is on stationarity since both complex and simple procedures alike rely

on it for validity.

It is difficult to conclusively determine if the variables constructed from text are

stationary or not. The KPSS test rejects trend stationarity, while, at the same time,

the ADF test rejects the null of unit root presence. Visual evidence supports the

KPSS test. This effect is very pronounced at a daily frequency, precisely where the

alternative data adds the most value. Time series of word counts and text lengths

appear remarkably similar. If a word characterization is sufficiently broad, then

it should be expected for the relevant word count to be higher for a longer text.

More formally, Johansen (1991) test provides strong statistical evidence supporting a

cointegrating relationship. As a result, Engle & Granger (1987) procedure is a better

alternative to a simple ratio of word count to text length.

There are two ways to account for non-stationarity. The easiest, although not al-

ways applicable, is to use robust statistics based on residuals (such as mean absolute

error). They are sufficient to show that when market returns are forecast with the

news-based sentiment, the prediction errors are higher in recessions. These results are

contrary to Garcia (2013) conclusions, which are derived from comparing regression

coefficients on non-stationary variables. Alternatively, it is possible to use the Engle

& Granger (1987) procedure to create a stationary measure and then make economic

conclusions based on the relevant coefficient’s magnitude. In the same setting (pre-

dicting market returns with the news-based sentiment), a stationary measure yields

an economically insignificant forecast. On the other hand, a relationship between the

trading volume and news-based sentiment is much stronger.

One potential explanation for these empirical findings is that the news capture

non-fundamental information. Suppose the news-based sentiment is not linked to the

economic indicators but reflects the animal spirits instead. The news either reflect

or influence the views of investors, subsequently causing them to act. Recessions are

defined retrospectively, based on a set of objective gauges such as inflation, GDP, etc.
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Then, relative to a normal expansionary state, prediction errors would also include

an unaccounted component coming from the depressed fundamentals. Additionally,

there is more money available for investment in expansions, so it is more likely that the

news-induced urges translate to actions. Similarly, the relationship between news and

trading volume is explained through the investor behavior. Given belief heterogeneity

(or differences in interpretation), price signals may cancel each other but trading

volume is never negative and increases with each transaction, some of which are

driven by the sentiment.

Finally, unstructured data can also be of higher quality than conventional, even

when economic fundamentals are of interest. One prominent example includes situa-

tions where there are trustworthiness concerns. Authoritarian countries are known to

manipulate21 or outright withhold22 information leaving interested parties no choice

but to use the alternatives. In the absence of multiple sources, it is especially im-

portant for policymakers to “know the data” since the combined forecast would be

derived exclusively from the unstructured sources.

21The Washington Post; May 15, 2018.
22The Wall Street Journal; April 23, 2022.

24

https://www.washingtonpost.com/news/wonk/wp/2018/05/15/satellite-data-strongly-suggests-that-china-russia-and-other-authoritarian-countries-are-fudging-their-gdp-reports/
https://www.wsj.com/articles/russia-blocks-economic-data-hiding-effect-of-western-sanctions-11650677765


Figures

Figure 1: Yearly Means of Word Counts and Frequencies
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Figure 2: Yearly Means of Stationary Change in Sentiment Measures
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Figure 3: Stationary Sentiment, Quantile Regressions, τ ∈ [0.1; 0.9]
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Tables

Table 1: Stationarity of Time Series Constructed from Unstructured Data

Article Variable Method Stationarity
Sentiment during
Recessions, Garcia
(2013)

Sentiment Dictionary,
Frequency

ADF, KPSS: reject null. Results holds for
all measures and underlying components.

A picture is worth
a thousand words:
Measuring investor
sentiment by combin-
ing machine learning
and photos from
news, Obaid & Puk-
thuanthong (2021)

Sentiment Multiple
Neural
Networks

ADF, KPSS: reject null. Results holds for
all measures.

Measuring news sen-
timent, Shapiro et al.
(2020)

Sentiment Dictionary,
SVR

ADF, KPSS: reject null.

Measuring Economic
Policy Uncertainty,
S. R. Baker et al.
(2016)

Uncertainty Dictionary,
Frequency

ADF: reject null at 1% with some exceptions
(2 states, 2 countries). KPSS (state level
data): at 1%, reject null for 77/153 series;
at 5%, reject null in 106 cases; at 10% in
123. KPSS (country): reject null in 17/25
cases.

News implied volatil-
ity and disaster con-
cerns, Manela & Mor-
eira (2017)

Volatility Dictionary,
Frequency,
SVR

ADF, KPSS: reject null. Exceptions: ADF
test fails to reject null hypothesis at 1%
level. Natural disasters time series fails to
have the null rejected under the KPSS test.

The Structure of Eco-
nomic News, Bybee et
al. (2020)

Multiple
Topics

Latent
Dirichlet
Allocation

ADF: at 1%, null hypothesis is rejected
168/180 times. KPSS: at 1%, null hypothe-
sis is rejected for 160/180 topics.

The economic effects
of trade policy uncer-
tainty, Caldara et al.
(2020)

Uncertainty Dictionary,
Frequency

ADF: reject null for all text-based time
series except total number of articles
(monthly). KPSS: reject null.

Measuring Geopoliti-
cal Risk, Caldara &
Iacoviello (2022)

Geopolitical
Risk

Dictionary,
Frequency

ADF: reject null for 108 series (monthly), all
(daily). KPSS: reject null for 81/110 series
(monthly); reject null for 6/6 (daily).
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Table 2: Stationarity Tests, Word Counts and Frequencies

The ADF test includes intercept and trend, the number of lags is set to 1. The ADF null
hypotheses: presence of a unit root (τ3), unit root without trend (ϕ3), unit root without
trend and without drift (ϕ2). The KPSS null hypothesis is trend-stationarity. The number
of lags (KPSS) is set to 4(T/100)0.25. Critical values (cval) are at 1% level.

ADF KPSS

τ3 cval ϕ2 cval ϕ3 cval τ cval

Length -107.39 -3.96 3,844.51 6.09 5,766.77 8.27 3.73 0.22
Count Pos. -104.33 -3.96 3,628.53 6.09 5,442.80 8.27 2.25 0.22
Count Neg. -96.94 -3.96 3,132.27 6.09 4,698.41 8.27 4.19 0.22
Freq. Pos. -97.20 -3.96 3,149.00 6.09 4,723.50 8.27 2.55 0.22
Freq. Neg. -89.08 -3.96 2,645.13 6.09 3,967.69 8.27 2.74 0.22
Pessimism -90.49 -3.96 2,729.67 6.09 4,094.51 8.27 3.43 0.22

Dow Ret. -112.47 -3.96 4,216.49 6.09 6,324.73 8.27 0.03 0.22

Note: Market (Dow) returns are included for reference, a known stationary variable
passes both tests.
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Table 3: Cointegration

The results include trace and and eigenvalue-based Johansen (1991) cointegration tests.
Pos, Neg, Len are non-stationary words counts, r is a number of cointegrating vectors.
Null hypothesis is no cointegration. Critical values are from Osterwald-Lenum (1992).

Critical Values

Variables Type Hypothesis Test Stat. 10% 5% 1%

Pos, Len Trace r ≤ 1 7,691.72 10.49 12.25 16.26
Pos, Len Trace r = 0 17,340.50 22.76 25.32 30.45
Pos, Len Eigen r ≤ 1 6,545.90 10.49 12.25 16.26
Pos, Len Eigen r = 0 16,275.93 22.76 25.32 30.45

Neg, Len Trace r ≤ 1 6,843.33 10.49 12.25 16.26
Neg, Len Trace r = 0 16,112.80 22.76 25.32 30.45
Neg, Len Eigen r ≤ 1 7,691.72 10.49 12.25 16.26
Neg, Len Eigen r = 0 9,648.78 16.85 18.96 23.65

Pos, Neg Trace r ≤ 1 6,545.90 10.49 12.25 16.26
Pos, Neg Trace r = 0 9,730.03 16.85 18.96 23.65
Pos, Neg Eigen r ≤ 1 6,843.33 10.49 12.25 16.26
Pos, Neg Eigen r = 0 9,269.47 16.85 18.96 23.65

Table 4: Summary Statistics of the Word Counts, 1905-2005

This table includes summary statistics for the individual word counts and text lengths.
The word counts and texts lengths are at a daily frequency. All days are included. The
first block shows pairwise Pearson correlation coefficients, n is a number of observations.

Correlations

Pos Neg Len n Mean StDev Min Med Max

Positive 1 0.62 0.84 27,447 18.81 11.94 0 18 1,385
Negative 0.62 1 0.83 27,447 32.48 19.02 0 30 1,975
Length 0.84 0.83 1 27,447 1,583.14 847.48 36 1,530 111,162
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Table 5: Stationarity Tests, Change in Sentiment Measures

∆Pos, ∆Neg, ∆Pess are changes in positive sentiment, negative sentiment, and
pessimism constructed using the two-step procedure. The ADF null hypotheses: presence
of a unit root (τ3), unit root without trend (ϕ3), unit root without trend and without drift
(ϕ2). The KPSS null hypothesis is trend-stationarity, alternative is presence of a unit root.

Critical Values

∆Pos ∆Neg ∆Pess 10% 5% 1%

ADF, τ3 -196.81 -194.47 -193.74 -3.12 -3.41 -3.96
ADF, ϕ2 12,911.171 12,605.58 12,511.15 4.03 4.68 6.09
ADF, ϕ3 19,366.751 18,908.38 18,766.72 5.34 6.25 8.27
KPSS 0.00053 0.00038 0.00040 0.119 0.146 0.216

Table 6: Daily DJIA Returns Summary Statistics

“Break” is the average length of consecutive prior non-trading days. “No Breaks”
(“Breaks”) include only days when the market was open (closed) on a prior day; “Br. ex
Mon” are non-Monday breaks. MAR is mean absolute return, AR10 is the first decile.

Daily DJIA Returns (%)

Group Count Break MAR AR10 Mean StDev Min Med Max

All Trading 25,253 0.46 0.742 0.091 0.020 1.13 -25.6 0.047 14.3

No Breaks 19,600 0 0.704 0.087 0.044 1.04 -12.5 0.055 13.9
Breaks 5,653 2.04 0.877 0.102 -0.063 1.39 -25.6 0.009 14.3
Br. ex Mon 754 1.90 0.919 0.103 0.048 1.45 -10.4 0.106 14.3

Monday 4,899 2.07 0.871 0.102 -0.080 1.39 -25.6 0 11.2
Tuesday 5,100 0.19 0.716 0.089 0.036 1.05 -12.5 0.042 13.9
Wednesday 5,143 0.03 0.727 0.089 0.055 1.10 -10.4 0.057 14.3
Thursday 5,064 0.02 0.694 0.086 0.024 1.03 -8.7 0.026 9.0
Friday 5,047 0.04 0.709 0.088 0.060 1.05 -8.8 0.094 8.9
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Table 7: Pairwise Tests of Return Distribution Similarity

Panels A reports p-values from comparing means of returns (above the diagonal) or means of
squared returns (below the diagonal) using Welch’s t-test. Panel B reports p-values from
comparing distributions of returns using Kolmogorov-Smirnov (KS) test (above the diagonal);
Anderson-Darling (AD) test (below the diagonal). Panel C reports p-values from the same
comparisons but only for the different partitions. Two-sample KS and AD p-values rely on
asymptotic distributions. “Break” is a subset of days that had a non-trading prior day, “No
Breaks” have no prior breaks in trading. “BxM” are breaks excluding Mondays. If p-value is less
than 0.001 it is reported as 0.

Panel A: Parametric Tests

Mon Tue Wed Thu Fri BxM
Mon 1 0 0 0 0 0.024


Welch’s t-test,
Returns

Tue 0 1 0.369 0.570 0.239 0.826
Wed 0.001 0.251 1 0.144 0.800 0.897
Thu 0 0.673 0.107 1 0.080 0.664
Fri 0 0.995 0.218 0.632 1 0.820

BxM 0.669 0.006 0.015 0.004 0.005 1︸ ︷︷ ︸
Welch’s t-test, Returns2

Panel B: Non-parametric Tests

Mon Tue Wed Thu Fri BxM
Mon 1 0 0 0 0 0.012


KS Test

Tue 0 1 0.753 0.118 0.006 0.020
Wed 0 0.873 1 0.332 0.019 0.007
Thu 0 0.194 0.140 1 0.001 0.001
Fri 0 0.018 0.022 0.002 1 0.013

BxM 0.006 0.001 0.001 0 0.0005 1︸ ︷︷ ︸
AD Test

Panel C: Breaks

Welch’s t, Welch’s t, KS AD
Ret. Ret.2

No Breaks vs Breaks 0 0 0 0
No Breaks vs BxM 0.937 0.004 0.006 0.0001
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Table 8: Robust Hypothesis Testing, Word Frequencies

Specification: Rt = βGGt−1 + βRRt−1 + βRSqR
2
t−1 + C + ϵ. Word frequencies (G) are

Pos/Len, Neg/Len, and (Neg − Pos)/Len (positive, negative, pessimism) constructed as
in Garcia (2013). Word frequencies are non-stationary. Dow returns span 1905-2005.
MAE and MSE are compared using two-sample Welch’s t-test; RMSE is reported instead
to match units. All p-values less than 0.001 are entered as 0.

Panel A: Dow Returns, Prediction Errors

MAE (bps) RMSE (bps)

Exp Rec p-value Exp Rec p-value

All Dates

Pos. Freq. 67.205 97.386 0 97.555 153.343 0
Neg. Freq. 67.186 97.233 0 97.548 153.362 0
Pessimism 67.186 97.146 0 97.514 153.250 0

No Breaks

Pos. Freq. 63.851 91.545 0 90.295 140.592 0
Neg. Freq. 63.842 91.497 0 90.291 140.676 0
Pessimism 63.840 91.435 0 90.275 140.609 0

Breaks

Pos. Freq. 78.285 116.702 0 118.452 187.469 0
Neg. Freq. 78.220 116.060 0 118.455 186.983 0
Pessimism 78.198 116.031 0 118.286 186.749 0

Panel B: Robust t-stat

βG (bps) tIM cv, α/2 Adj. R2 (%)

Exp Rec Exp Rec .005 .025 Exp Rec

All Dates

Pos. Freq. 3.296 8.558 13.664 2.368 ±5.841 ±3.182 0.572 0.282
Neg. Freq. -3.535 -7.950 -3.106 -2.157 ±5.841 ±3.182 0.587 0.258
Pessimism -4.542 -10.590 -4.355 -2.330 ±5.841 ±3.182 0.655 0.402

No Breaks

Pos. Freq. 2.251 6.690 4.155 1.851 ±5.841 ±3.182 0.482 0.123
Neg. Freq. -2.416 -3.709 -2.395 -1.411 ±5.841 ±3.182 0.491 0.003
Pessimism -3.074 -6.252 -2.812 -1.856 ±5.841 ±3.182 0.527 0.099

Breaks

Pos. Freq. 7.920 16.262 4.162 2.556 ±5.841 ±3.182 2.033 2.738
Neg. Freq. -8.071 -23.622 -2.321 -2.329 ±5.841 ±3.182 2.028 3.241
Pessimism -10.906 -26.801 -3.995 -2.454 ±5.841 ±3.182 2.307 3.484
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Table 9: Out-of-Sample Validation of Predictability

Model specifications: Rt = βMMt−1 +C + ϵ and ∆log(V lm)t = βMMt−1 +C + ϵ. Training
periods are 1905-1925 (Dow), 1926-1941 (trading volume). Only days with no prior breaks
are included. Sentiment measures are stationary, created with the two-step procedure.
Return regression errors are in basis points (bps), trading volume in percentage points
(%pp). Out-of-sample measures are incrementally re-estimated and are benchmarked
against the historical average.

Panel A: In-Sample, Daily Dow Returns

1905-2005 1926-2005

MAE RMSE Adj.R2 MAE RMSE Adj.R2

(bps) (bps) (%) (bps) (bps) (%)

∆Pos 70.170 104.075 0.058 70.131 105.695 0.092
∆Neg 70.128 104.047 0.111 70.085 105.671 0.138
∆Pess 70.123 104.035 0.135 70.065 105.646 0.186

Panel B: In-Sample, Trading Volume

1926-2005 1942-2005

MAE RMSE Adj.R2 MAE RMSE Adj.R2

(%pp) (%pp) (%) (%pp) (%pp) (%)

∆Pos 14.7843 20.7606 0.0370 12.8599 17.6960 0.0695
∆Neg 14.7390 20.7103 0.5204 12.8133 17.6413 0.6861
∆Pess 14.7571 20.7320 0.3115 12.8305 17.6622 0.4507

Panel C: Out-of-Sample, Returns and Volume

Returns, 1926-2005 Volume, 1942-2005

MAE RMSE R2
OOS MAE RMSE R2

OOS

(bps) (bps) (%) (%pp) (%pp) (%)

Benchmark 70.1996 105.7556 0 12.8695 17.7062 0
∆Pos 70.1617 105.7244 0.0591 12.8644 17.7009 0.0598
∆Neg 70.1235 105.6919 0.1204 12.8175 17.6460 0.6788
∆Pess 70.1117 105.6760 0.1505 12.8332 17.6664 0.4496
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Table 10: Dow and Volume Predictability, Stationary Sentiment

Model specifications: Rt = βMMt−1 + βRRt−1 + βRSqR
2
t−1 + C + ϵ and

∆log(V lm)t = βMMt−1 + βV lm∆log(V lm)t−1 + βRRt−1 + βRSqR
2
t−1 + C + ϵ. Only days

with no prior breaks are included. Sentiment measures are stationary, created with the
two-step procedure. Return regression betas are in basis points, trading volume in
percentage points. Adj. R2 is in percent, p-values less than 0.0001 are reported as 0.
Quantile regression confidence intervals follow Koenker (1994), kernel p-value is based on
Powell (1991), bootstrap is pairwise as described in Koenker (2005).

Dow Returns Volume
1905-2005 1926-2005

∆Pos ∆Neg ∆Pess ∆Pos ∆Neg ∆Pess

βM,OLS 2.454 -3.472 -3.853 0.376 -1.510 -1.162
tIM 7.199 -6.367 -11.908 1.656 -15.111 -5.484
cv, α/2 = .025 ±3.182 ±3.182 ±3.182 ±3.182 ±3.182 ±3.182
cv, α/2 = .005 ±5.841 ±5.841 ±5.841 ±5.841 ±5.841 ±5.841
Adj. R2 (%) 0.190 0.243 0.266 1.990 2.468 2.253

βM,QR; τ = 0.5 2.591 -3.720 -3.979 0.337 -1.373 -1.126
Lower Bound, βM,QR 1.511 -5.042 -4.962 0.039 -1.612 -1.419
Upper Bound, βM,QR 3.572 -2.869 -2.954 0.620 -1.192 -0.827
Bootstrap, p-value 0 0 0 0.051 0 0
Kernel, p-value 0.0001 0 0 0.040 0 0
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